SPECIALIST MATHEMATICS

Units 3 & 4 – Written examination 2

(TSSM's 2012 trial exam updated for the current study design)

SOLUTIONS

SECTION 1: Multiple-choice questions (1 mark each)

Question 1

Answer: A

Explanation

The gradient, $m = \pm \frac{2}{3}$, therefore a = 3 and b = 2 (multiples of 3 and 2 are excluded by given choices). **Options B and E are therefore eliminated.**

The *x*-intercepts for each asymptote respectively are $\left(\frac{11}{2}, 0\right)$ and $\left(-\frac{7}{2}, 0\right)$.

The *x*-coordinate of the centre of the hyperbola is $\frac{1}{2}\left(\frac{11}{2}-\frac{7}{2}\right)=1$.

The *y*-intercepts for each asymptote respectively are $\left(0, -\frac{11}{3}\right)$ and $\left(0, -\frac{7}{3}\right)$.

The *y*-coordinate of the centre of the hyperbola is $\frac{1}{2}\left(-\frac{11}{3}-\frac{7}{3}\right) = -3$.

The centre of the hyperbola is therefore (1, -3). Options C and D are therefore eliminated, It follows that the equation of the hyperbola could be

$$\frac{(y+3)^2}{4} - \frac{(x-1)^2}{9} = 1 \Longrightarrow 9(y+3)^2 - 4(x-1)^2 = 36$$

Answer: D

Explanation:

For two vertical asymptotes, require two solutions to the equation $2x^2 + kx + 5 = 0$ The discriminant, $\Delta > 0 \Rightarrow k^2 - 40 > 0 \Rightarrow k \in (-\infty, -2\sqrt{10}) \cup (2\sqrt{10}, \infty)$

Question 3

Answer: C Explanation:

$$3x-6 \in [-1,1] \qquad \cos^{-1}(3x-6) \in [0,\pi] 3x \in [5,7] \qquad 2\cos^{-1}(3x-6) \in [0,2\pi] x \in \left[\frac{5}{3},\frac{7}{3}\right] \qquad 2\cos^{-1}(3x-6)-1 \in [-1,2\pi-1]$$

Question 4

Answer: B

Explanation:

$$z^{4} = -8i$$
$$|z|^{4} \operatorname{cis4} \theta = 8 \operatorname{cis} \left(-\frac{\pi}{2} \right)$$
$$|z|^{4} = 8$$
$$|z| = 2^{\frac{3}{4}}$$
$$4\theta = -\frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{2}, \frac{11\pi}{2}$$
$$\theta = -\frac{\pi}{8}, \frac{3\pi}{8}, \frac{7\pi}{8}, \frac{11\pi}{8}$$
$$= -\frac{5\pi}{8}, -\frac{\pi}{8}, \frac{3\pi}{8}, \frac{7\pi}{8}$$

Therefore, the fourth roots are $2^{\frac{3}{4}} \operatorname{cis}\left(-\frac{5\pi}{8}\right)$, $2^{\frac{3}{4}} \operatorname{cis}\left(-\frac{\pi}{8}\right)$, $2^{\frac{3}{4}} \operatorname{cis}\left(\frac{3\pi}{8}\right)$ and $2^{\frac{3}{4}} \operatorname{cis}\left(\frac{7\pi}{8}\right)$

Answer: C

$$\overline{z} = -2 - 2\sqrt{3}i$$
$$= 4\operatorname{cis}\left(-\frac{2\pi}{3}\right)$$
$$\sqrt{\overline{z}} = \overline{z}^{\frac{1}{2}}$$
$$= 2\operatorname{cis}\left(-\frac{\pi}{3}\right)$$

Question 6

Answer: B Explanation:

$$\frac{\left(-1-i\sqrt{3}\right)^2}{\left(\sqrt{3}+i\right)^3} = \frac{4\operatorname{cis}\left(-\frac{4\pi}{3}\right)}{8\operatorname{cis}\left(\frac{\pi}{2}\right)}$$
$$= \frac{1}{2}\operatorname{cis}\left(-\frac{4\pi}{3}-\frac{\pi}{2}\right)$$
$$= \frac{1}{2}\operatorname{cis}\left(-\frac{11\pi}{6}\right)$$
Therefore,
$$\operatorname{Im}\left(\frac{\left(-1-i\sqrt{3}\right)^2}{\left(\sqrt{3}+i\right)^3}\right) = \frac{1}{2}\operatorname{sin}\left(-\frac{11\pi}{6}\right) = \frac{1}{4}$$

Answer: E

Explanation:

$$\sec A = \frac{5}{2} \Longrightarrow \cos A = \frac{2}{5} \Longrightarrow \sin A = \frac{\sqrt{21}}{5}$$
$$\csc B = -3 \Longrightarrow \sin B = -\frac{1}{3} \Longrightarrow \cos B = \frac{2\sqrt{2}}{3}$$
$$\sin (A+B) = \sin A \cos B + \cos A \sin B$$
$$= \frac{\sqrt{21}}{5} \times \frac{2\sqrt{2}}{3} - \frac{2}{5} \times \frac{1}{3}$$
$$= \frac{2}{15} (\sqrt{42} - 1)$$

Question 8

Answer: C Explanation:

$$\underline{b} - \underline{c} = 3\underline{j} - 2\underline{k}$$

The scalar resolute of \underline{a} in the direction of $\underline{b} - \underline{c}$ is equal to

$$\left(2\underline{i}-3\underline{j}+\underline{k}\right)\cdot\frac{1}{\sqrt{13}}\left(3\underline{j}-2\underline{k}\right)=-\frac{11}{\sqrt{13}}$$

Therefore, the vector resolute of \underline{a} in the direction of $\underline{b} - \underline{c}$ is equal to

$$-\frac{11}{\sqrt{13}} \times \frac{1}{\sqrt{13}} \left(3j - 2k \right) = -\frac{11}{13} \left(3j - 2k \right)$$

Answer: D Explanation:

$$\overrightarrow{OM} = \overrightarrow{OA} + \frac{5}{9}\overrightarrow{AB}$$
$$= \overrightarrow{OA} + \frac{5}{9}\left(\overrightarrow{OB} - \overrightarrow{OA}\right)$$
$$= \frac{4}{9}\overrightarrow{OA} + \frac{5}{9}\overrightarrow{OB}$$
$$= \frac{1}{9}\left(4\overrightarrow{OA} + 5\overrightarrow{OB}\right)$$
$$= -\frac{1}{9}\left(4\overrightarrow{AO} + 5\overrightarrow{BO}\right)$$

Question 10

Answer: A

Explanation:

$$3x-5y+10=0 \Rightarrow y=\frac{3}{5}x+2$$

A line that is perpendicular to the line 3x-5y+10=0 has a gradient of $-\frac{5}{3}$.

Therefore, a vector, y that is perpendicular to the line 3x-5y+10=0 can be expressed as y = 3i - 5j. It follows that a vector perpendicular to the line 3x-5y+10=0 with magnitude 12 units is

$$12 \times \hat{y} = 12 \times \frac{y}{|y|}$$
$$= 12 \times \frac{\pm 1}{\sqrt{34}} \left(3\underline{i} - 5\underline{j} \right)$$
$$= \pm \frac{6\sqrt{34}}{17} \left(3\underline{i} - 5\underline{j} \right)$$

Answer: C

Explanation

$$x = 1 + \cos 2t$$

$$y = \sin t$$

$$x = 1 + 1 - 2\sin^{2} t$$

$$= 2 - 2\sin^{2} t$$

$$= 2 - 2y^{2}$$

$$2y^{2} = 2 - x$$

$$y^{2} = \frac{2 - x}{2}$$

$$y = \pm \sqrt{\frac{2 - x}{2}}$$

Since $t \in \left[0, \frac{\pi}{2}\right] \Rightarrow y \in [0, 1]$
Therefore, $y = \sqrt{\frac{2 - x}{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{4 - 2x}}{2}$

Question 12

Answer: E

Explanation:

At the point of intersection,

$$2 - x^2 = \sqrt{x} \Longrightarrow x = 1$$

The volume, V is

$$V = \pi \int_{0}^{1} (2 - x^{2})^{2} dx - \pi \int_{0}^{1} (\sqrt{x})^{2} dx$$
$$= \pi \int_{0}^{1} (2 - x^{2})^{2} - x dx$$

Answer: B

Explanation:

$$u = 1 - 2x \Longrightarrow x = \frac{1 - u}{2}$$
$$\frac{du}{dx} = -2$$
$$-\frac{1}{2}\frac{du}{dx} = 1$$
$$x = -1, u = 3$$
$$x = 2, u = -3$$

Therefore,

$$\int_{-1}^{2} \frac{x}{\sqrt{1-2x}} dx = \int_{-3}^{-3} \frac{1-u}{2} \times \frac{1}{\sqrt{u}} \times -\frac{1}{2} \frac{du}{dx} dx$$
$$= \int_{-3}^{-3} \frac{u-1}{4\sqrt{u}} du$$
$$= \frac{1}{4} \int_{-3}^{3} \frac{1-u}{\sqrt{u}} du$$

Question 14

Answer: D Explanation:

$$\frac{d}{dx}(x^2y - y^2) = 0$$

$$2xy + x^2 \frac{dy}{dx} - 2y \frac{dy}{dx} = 0$$

$$\frac{dy}{dx}(x^2 - 2y) = -2xy$$

$$\frac{dy}{dx} = \frac{-2xy}{x^2 - 2y}$$

The gradient is undefined when $x^2 - 2y = 0$ This condition is satisfied by the point $\left(-2\sqrt{2}, 4\right)$

SPECMATH EXAM 2

Question 15

Answer: B

Explanation

The graph at right represents a possible function, y = f(x). It shows that a local minimum occurs at (-1, 0), a non-stationary point of inflection at (0, 2) and a stationary point occurs at (2, 0)

Question 16

Answer: A

Explanation

Tabulating, we have

n	X _n	\mathcal{Y}_n	$\frac{dy}{dx} = 2\cos^{-1}\left(\frac{x_n}{3}\right)$
0	1.00	2.000000	2.461919
1	1.20	2.492384	2.318559
2	1.40	2.956096	2.170556
3	1.60	3.390207	

Question 17

Answer: E

Explanation:

Inflow = 0

$$\text{Outflow} = \frac{6x}{300 + 2t} = \frac{3x}{150 + t}$$

Therefore, $\frac{dx}{dt} = 0 - \frac{3x}{150+t} = \frac{-3x}{150+t}$ where x = 1200 grams when t = 0

Answer: A

Explanation:

The gradient of the line joining the points (10, 40) and (20, -20) is -6. Therefore, the equation of the line joining the points (10, 40) and (20, -20) is

 $v - 40 = -6(t - 10) \Longrightarrow v = 100 - 6t$

When $v = 0 \Longrightarrow 100 - 6t = 0 \Longrightarrow t = \frac{50}{3}$

Therefore, the total distance travelled by the particle is

$$\frac{1}{2} \times \frac{50}{3} \times 40 + \frac{1}{2} \times \left(30 - \frac{50}{3}\right) \times 20 = \frac{1400}{3}$$

Question 19

Answer: E

Explanation:

If the vertical displacement of the two objects are denoted s_1 and s_2 , and if t represents the time in seconds that have elapsed after the projection of the first object, then

$$s_1 = 20t - 4.9t^2$$
 and $s_2 = 18(t-2) - 4.9(t-2)^2$

At the point of collision, $s_1 = s_2 \implies 20t - 4.9t^2 = 18(t-2) - 4.9(t-2)^2$

Solving, we have t = 3.16 seconds with the collision point $20 \times 3.16 - 4.9 \times 3.16^2 = 14.3$ metres above ground level.

Therefore, the objects will collide approximately 3.16 seconds after the projection of the first object.

Answer: B

Explanation:

$$a(v) = v^{2} + 4$$

$$v \frac{dv}{dx} = v^{2} + 4$$

$$\frac{dv}{dx} = \frac{v^{2} + 4}{v}$$

$$\frac{dx}{dv} = \frac{v}{v^{2} + 4}$$

$$x = \int \frac{v}{v^{2} + 4} dv$$

$$= \frac{1}{2} \log_{e} |v^{2} + 4| + c$$

Since v(1) = 2, then

$$1 = \frac{1}{2}\log_e 8 + c \Longrightarrow c = 1 - \frac{1}{2}\log_e 8$$

Therefore

Therefore,

$$x = \frac{1}{2} \log_e \frac{v^2 + 4}{8}$$
$$\log_e \frac{v^2 + 4}{8} = 2(x - 1)$$
$$v^2 = 4(2e^{2(x - 1)} - 1) \Longrightarrow v = \pm 2\sqrt{2e^{2(x - 1)} - 1}$$
$$v = 2\sqrt{2e^{2(x - 1)} - 1}$$

Question 21

Answer: B

Explanation:

The resultant force,

$$\begin{split} \vec{F} &= \vec{F}_{1} + \vec{F}_{2} + \vec{F}_{3} \\ &= 2\vec{i} - 3\vec{j} - \vec{k} - \vec{i} + 4\vec{j} + 2\vec{k} + \vec{i} + 4\vec{j} - 2\vec{k} \\ &= 2\vec{i} + 5\vec{j} - \vec{k} \\ &|\vec{F}| = \sqrt{2^{2} + 5^{2} + (-1)^{2}} \\ &= \sqrt{30} \end{split}$$

Therefore, the mass of the particle, $m = \frac{\sqrt{30}}{2.5} = \frac{2\sqrt{30}}{5}$ kg

SPECMATH EXAM 2

Question 22

Answer: D Explanation:

 $25 \times 9.8 \times \sin(46^\circ) = 25 \times a$ a = 7.05

SECTION 2

Question 1

a.

$$\operatorname{cis}\left(\theta - \frac{3\pi}{2}\right) = \cos\left(\theta - \frac{3\pi}{2}\right) + i\sin\left(\theta - \frac{3\pi}{2}\right)$$
$$= \cos\left(\frac{3\pi}{2} - \theta\right) - i\sin\left(\frac{3\pi}{2} - \theta\right)$$
$$= -\sin\theta - (-i\cos\theta)$$
$$= -\sin\theta + i\cos\theta$$
[M2]

b.

LHS =
$$\frac{1}{\operatorname{cis}\left(\theta - \frac{3\pi}{2}\right)}$$

= $\left(\operatorname{cis}\left(\theta - \frac{3\pi}{2}\right)\right)^{-1}$
= $\operatorname{cis}\left(\frac{3\pi}{2} - \theta\right)$
= $-\operatorname{sin}\theta - i\cos\theta$
= $-(\sin\theta + i\cos\theta)$
= $-\left(\cos\left(\frac{\pi}{2} - \theta\right) + i\sin\left(\frac{\pi}{2} - \theta\right)\right)$
= $-\operatorname{cis}\left(\frac{\pi}{2} - \theta\right)$
= RHS

c.

Using technology,

$$\left(-\sin\theta + i\cos\theta\right)^4 = 1 - 8\sin^2\theta\cos^2\theta + 4\sin\theta\cos\theta\left(2\cos^2\theta - 1\right)i$$
 [A1]

d.

LHS =
$$\left(\operatorname{cis} \left(\theta - \frac{3\pi}{2} \right) \right)^4$$

= $\operatorname{cis} \left(4 \left(\theta - \frac{3\pi}{2} \right) \right)$
= $\operatorname{cis} \left(4\theta - 6\pi \right)$
= $\operatorname{cis} \left(4\theta \right)$
= RHS

e.

From parts **c.** and **d.**

From parts **c.** and **d.**

$$\operatorname{cis}(4\theta) = (-\sin\theta + i\cos\theta)^{4}$$

$$\cos(4\theta) + i\sin(4\theta) = 1 - 8\sin^{2}\theta\cos^{2}\theta + 4\sin\theta\cos\theta(2\cos^{2}\theta - 1)i$$
Equating coefficients,

$$\cos(4\theta) = 1 - 8\sin^{2}\theta\cos^{2}\theta$$

$$= 1 - 8\sin^{2}\theta(1 - \sin^{2}\theta)$$

$$= 1 - 8\sin^{2}\theta + 8\sin^{4}\theta$$
[M1] [A1]

f.

$$\cot \theta = -\frac{5}{2} \Longrightarrow \sin \theta = \frac{2}{\sqrt{29}}$$

$$\cos \left(4\theta\right) = 1 - 8 \left(\frac{2}{\sqrt{29}}\right)^2 + 8 \left(\frac{2}{\sqrt{29}}\right)^4 = \frac{41}{841}$$
[M1] [A1]

 $f(x) = \frac{1}{e^{x} \sec x}$ = $e^{-x} \cos x$ $f'(x) = -e^{-x} \cos x - e^{-x} \sin x$ = $-e^{-x} (\cos x + \sin x)$ $f''(x) = -e^{-x} (-\sin x + \cos x) + e^{-x} (\cos x + \sin x)$ = $2e^{-x} \sin x$ [M2]

At a point of inflection, f''(x) = 0

Therefore, $2e^{-x} \sin x = 0 \Longrightarrow x = -\pi, 0, \pi$

And sketching y = f''(x), we have

Since y = f''(x) changes sign for $x \in (-\infty, -\pi) \cup (-\pi, \pi) \cup (\pi, \infty)$ then $x = -\pi, 0, \pi$ gives rise to three non-stationary points of inflection.

The points of inflection are $\left(-\pi, -e^{\pi}\right)$, $\left(0, 1\right)$ and $\left(\pi, -\frac{1}{e^{\pi}}\right)$ [A1]

b.

i.

$$2f''(x) + \frac{1}{2}f'(x) + m = 0$$

$$2(2e^{-x}\sin x) + \frac{1}{2}(-e^{-x}(\cos x + \sin x)) + m = 0$$

$$\frac{1}{2}e^{-x}\cos x - \frac{7}{2}e^{-x}\sin x = m$$
[M1]

Sketching $y = \frac{1}{2}e^{-x}\cos x - \frac{7}{2}e^{-x}\sin x$, we have

The local minimum is (0.9273, -0.9891). Therefore, there will be three solutions to the differential equation for $m \in (-0.989, 0)$ [M1]

ii Solving $\frac{7}{2}e^{-x}\sin x - \frac{1}{2}e^{-x}\cos x - \frac{1}{4} = 0 \Rightarrow x = -3.00, 0.23, 2.40$ [A1]

c.

The transformed equation is
$$g(x) = \frac{-2}{e^{x-\frac{\pi}{8}} \sec\left(x - \frac{\pi}{8}\right)}$$
 [A1]

d.

From the calculator,

the points of intersection are (-1.28, 1.04) and (1.87, -0.04) [A2]

e.

From the calculator,

The area,
$$A = \int_{-1.28}^{1.87} \frac{1}{e^x \sec x} - \frac{2}{e^{x - \frac{\pi}{8}} \sec\left(x - \frac{\pi}{8}\right)} dx = 7.3$$
 square units [A1]

Question 3

a.

Let the point where the tangent touches the curve be $(a, 2a^2 + 1)$. It follows that the gradient of the line joining the points $(a, 2a^2 + 1)$ and (1, -3) is

$$\frac{2a^2 + 1 - (-3)}{a - 1} = \frac{2a^2 + 4}{a - 1}$$

Also, $\frac{dy}{dx} = 4x$. At $(a, 2a^2 + 1)$, $\frac{dy}{dx} = 4a$

Therefore,

$$\frac{2a^{2} + 4}{a - 1} = 4a$$

$$a^{2} - 2a - 2 = 0$$

$$a = \frac{2 + \sqrt{12}}{2}$$

$$= \sqrt{3} + 1$$
And $y = 2(\sqrt{3} + 1)^{2} + 1 = 4\sqrt{3} + 9$

Therefore, the point where the tangent touches the curve is $(\sqrt{3}+1, 4\sqrt{3}+9)$ [A1]

b.

At
$$(1, -3)$$
,
 $y - (-3) = 4(\sqrt{3} + 1)(x - 1)$
 $y = 4(\sqrt{3} + 1)x - 4\sqrt{3} - 7$
[A1]

[M2]

The required area, A is calculated as

$$A = \int_{0}^{\sqrt{3}+1} 2x^{2} + 1 - (-3)dx - \frac{1}{2} \times (4\sqrt{3} + 9 - (-3)) \times (\sqrt{3} + 1 - 1)$$

= $\int_{0}^{\sqrt{3}+1} 2x^{2} + 4dx - \frac{1}{2} \times (4\sqrt{3} + 12) \times \sqrt{3}$
= $8\sqrt{3} + \frac{32}{3} - (6\sqrt{3} + 6)$
= $\frac{2(3\sqrt{3} + 7)}{3}$ square units [M1]

d.

Since
$$y = 4(\sqrt{3}+1)x - 4\sqrt{3} - 7 \Rightarrow x = \frac{y + 4\sqrt{3} + 7}{4(\sqrt{3}+1)}$$

And since $y = 2x^2 + 1 \Rightarrow x^2 = \frac{y-1}{2}$ [M1]

Therefore, the volume, V is calculated as

$$V = \pi \int_{-3}^{4\sqrt{3}+9} \left(\frac{y+4\sqrt{3}+7}{4(\sqrt{3}+1)} \right)^2 dy - \pi \int_{1}^{4\sqrt{3}+9} \frac{y-1}{2} dy$$

$$= 4\pi \left(\sqrt{3}+2 \right) \text{ cubic units}$$
[M2]

٦

Question 4

a.

For car B, the parametric equations are $x = \frac{t^2 - 8}{2}$ and y = t - 3

Therefore,

$$x = \frac{(y+3)^2 - 8}{2}$$

$$(y+3)^2 = 2x+8$$

$$y+3 = \pm\sqrt{2x+8}$$

$$y = -3 + \sqrt{2x+8} \text{ since } y \in [-3, \infty)$$
where $2x+8 \ge 0 \Longrightarrow x \in [-4, \infty)$ [M1]

c.

Equating the *x*-coordinates for both cars, $\frac{t^2 - 8}{2} = t + 3 \Rightarrow t = 4.873$. Therefore, $y_A = 4.873^2 - 4 \times 4.873 = 4.254$ and $y_B = 4.873 - 3 = 1.873$ Since the *y*-coordinates for both cars do not coincide at the same point in time, the cars do not collide

d.

Note that since the cars do not collide, we cannot use vector methods to find the required angle. Instead, we need to use coordinate geometry.

At the point of intersection,

$$x^{2}-10x+21 = -3 + \sqrt{2x+8} \Rightarrow x = 7.403$$
For car A, $\frac{dy}{dx} = 2x-10$ and for car B, $\frac{dy}{dx} = \frac{1}{\sqrt{2x+8}}$
At $x = 7.403$,
For car A, the gradient, $m_{A} = 4.81$ and for car B, $m_{B} = 0.209$
Therefore, at the point of intersection, the acute angle between the two paths,
 θ is given by $\theta = \tan^{-1}(4.81) - \tan^{-1}(0.21) = 66^{\circ}$
[A1]

(Alternatively, you could find the times for both position vectors corresponding to x = 7.403, and then find the angle between their respective velocity vectors at those particular times.)

e.

The distance between the cars, d at any time, $t \ge 0$ is given by

$$\sqrt{\left(\frac{t^2 - 2t - 14}{2}\right)^2 + (t^2 - 5t + 3)^2}$$
[M1]

f.

$$\sqrt{\left(\frac{t^2 - 2t - 14}{2}\right)^2 + (t^2 - 5t + 3)^2} = 5 \Longrightarrow t = 3.47 \text{ and } 5.31 \text{ seconds}$$
[A1]

 $\begin{array}{c} \mathbf{g} \cdot \\ \underbrace{\mathbf{y}_{\mathrm{A}} = \underline{i} + (2t - 4) \underline{j}} \\ \underbrace{\mathbf{y}_{\mathrm{B}} = t \underline{i} + \underline{j}} \end{array} \right\} \quad [\mathrm{A1}]$

h.

Require
$$y_A \cdot y_B = 0 \Rightarrow (i + (2t - 4) j) \cdot (ti + j) = 0$$
 [M1]
i.e. $t + 2t - 4 = 0 \Rightarrow 3t - 4 = 0 \Rightarrow t = \frac{4}{3}$ seconds [A1]

Question 5

a.

$$v^2 = 2g \times 90 \Longrightarrow v = \sqrt{2g \times 90} = 42 \text{ ms}^{-1}$$
 [A1]

b.

The equation of motion is

$$5v^2 - 85g = -85a$$
 [M1]

Therefore,

$$a = \frac{85g - 5v^2}{85} \qquad \} \quad [M1]$$
$$= \frac{17g - v^2}{17}$$

$$v \frac{dv}{dx} = \frac{17g - v^{2}}{17}$$

$$\frac{dv}{dx} = \frac{17g - v^{2}}{17v}$$

$$\frac{dx}{dv} = \frac{17v}{17g - v^{2}}$$

$$x = \int \frac{17v}{17g - v^{2}} dv$$
Let $u = 17g - v^{2}$

$$\frac{du}{dv} = -2v \Rightarrow -\frac{1}{2} \frac{du}{dv} = v$$
Therefore,
$$x = \int \frac{17v}{17g - v^{2}} dv$$

$$= -\frac{17}{2} \int \frac{1}{u} du$$

$$= -\frac{17}{2} \log_{e} |u| + c$$

$$= -\frac{17}{2} \log_{e} |17g - v^{2}| + c$$
[M1]

[M1]

)

When
$$x = 0$$
, $v = 42$

Therefore,

$$0 = -\frac{17}{2}\log_{e} \left| -1597.4 \right| + c$$
$$c = \frac{17}{2}\log_{e} \left| -1597.4 \right|$$

It follows that

$$x = \frac{17}{2} \log_{e} \left| \frac{1597.4}{v^{2} - 17g} \right|$$
$$e^{-\frac{2x}{17}} = \frac{v^{2} - 17g}{1597.4}$$
$$v^{2} = 1597.4e^{-\frac{2x}{17}} + 17g$$
$$v = \sqrt{1597.4e^{-\frac{2x}{17}} + 166.6}$$

d.
As
$$x \to \infty$$
, $e^{\frac{2x}{17}} \to 0 \Rightarrow v \to \sqrt{166.6} = 12.91 \text{ ms}^{-1}$ [A1]

e.

Solving $\sqrt{1597.4e^{-\frac{2x}{17}} + 166.6} = 25.8 \Rightarrow x = 9.89$ [M1]

The distance that Alex is from ground level at this point is $738-9.89 \approx 728$ m [A1]

f.

