•••			
 	· · · · · ·	· • • • • • • • • • • • • • • • • • • •	
••••			

Online & home tutors Registered business name: itute ABN: 96 297 924 083

Specialist Mathematics

2013

Trial Examination 2

SECTION 1 Multiple-choice questions

Instructions for Section 1

Answer **all** questions. Choose the response that is **correct** for the question. A correct answer scores 1, an incorrect answer scores 0. Marks will **not** be deducted for incorrect answers. **No** marks will be given if more than one answer is completed for any question. Unless otherwise indicated, the diagrams in this exam are **not** drawn to scale. Take the **acceleration due to gravity** to have magnitude $g \text{ ms}^{-2}$, where g = 9.8.

Question 1 Given |z| = 5, |z - 4 + 4i| = 1 and $Arg(z) = \theta$, $\tan \theta =$

A. -1B. $-\frac{4}{3}$ C. $\frac{3}{4}$ D. 1 E. $\frac{4}{3}$

Question 2 Given $i^7 z = \frac{\pi}{2} cis\left(-\frac{2\pi}{3}\right)$, Arg(z) =A. $\frac{\pi}{6}$ B. $\frac{\pi}{3}$ C. $\frac{5\pi}{6}$ D. $-\frac{\pi}{3}$ E. $-\frac{\pi}{6}$

Question 3 Given $a, b, c \in R^+$, and $z \in C$ such that $2\operatorname{Re}(z) = \operatorname{Im}(z)$, the maximum number of z satisfying the equation $a|z|^2 + b|z| - c = 0$ is

- A. 0
- **B**. 1
- C. 2
- D. 3
- E. 4

Question 4 Given $z = rcis\theta$ and w = z - r, where $r \in R^+$, then |w| =

- A. $r\cos\theta$
- B. $r\sin\theta$
- C. $2r\cos\frac{\theta}{2}$
- D. $2r\sin\frac{\theta}{2}$
- E. 2*r*

Question 5 The asymptotes of a hyperbola make a 60° angle. A possible equation of the hyperbola is

- A. $\frac{(x+2)^2}{4} \frac{(y+6)^2}{2} = 1$ B. $\frac{x^2}{3} - (y-2)^2 = 1$ C. $\frac{(x-1)^2}{6} - \frac{(y-2)^2}{2} = 1$ D. $\frac{(x+2)^2}{4} - \frac{(y-2)^2}{9} = 1$
- E. $(x-2)^2 \frac{(y+2)^2}{9} = 1$

Question 6 The graph of $y = \frac{1}{x^2 - px + q}$, where $p, q \in R \setminus \{0\}$, has a turning point when

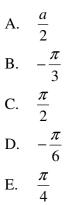
- A. $p^2 > 4q$ only
- B. $p^2 < 4q$ only
- C. $p^2 = 4q$
- D. $p^2 \neq 4q$
- E. $p^2 \neq 2q$

Question 7 A sequence of transformations changing the ellipse $\frac{(x-2)^2}{4} + 4y^2 = 1$ to the circle of radius 1 unit centred at the origin *O* is

centred at the origin 0 is

- A. Dilate from the *y*-axis by a factor of 2 and from the *x*-axis by a factor of 0.5, and then translate in the negative x direction by 1 unit
- B. Dilate from the *x*-axis by a factor of 2 and from the *y*-axis by a factor of 0.5, and then translate in the positive x direction by 1 unit
- C. Translate in the negative x direction by 2 units, and then dilate from the y-axis by a factor of 0.5 and from the x-axis by a factor of 2
- D. Translate in the positive x direction by 2 units, and then dilate from the y-axis by a factor of 2 and from the x-axis by a factor of 0.5
- E. Translate in the negative x direction by 2 units, and then dilate from the y-axis by a factor of 2 and from the x-axis by a factor of 0.5

Question 8 Given $\sec(a+b) + \csc(a-b) = 0$, a possible value for b is



Question 9 Given $f:\left(0,\frac{1}{a}\right] \to R$, $f(x) = \frac{2}{\pi}\cos^{-1}\left(ax - \frac{1}{2}\right)$ and $a \in R^+$, the domain of f^{-1} is

A. $\left(-\frac{2}{3}, \frac{2}{3}\right]$ B. $\left[\frac{2}{3}, \frac{4}{3}\right]$ C. $\left(-\frac{4}{3}, \frac{4}{3}\right]$ D. $\left[a-\frac{2}{3}, a+\frac{2}{3}\right]$ E. $\left(a+\frac{2}{3}, a+\frac{4}{3}\right]$

Question 10 The equation $b \tan^{-1}\left(\frac{x-c}{a}\right) - a \tan\left(\frac{x-c}{b}\right) = 0$, where a, b and $c \in \mathbb{R}^+$, and $-\frac{\pi}{2} < \frac{x-c}{b} < \frac{\pi}{2}$, has *more than one* solution when

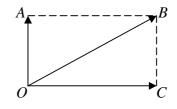
- A. a = b
- B. ab = 1
- C. a > b
- D. a < b
- E. a+b>2

Question 11 \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC} are *position vectors* of points *A*, *B* and *C* respectively, and *OABC* is a *rectangle*. Which one of the following statements is **un**defined in kinematics?

- A. $\overrightarrow{OA} + \overrightarrow{OC} = \overrightarrow{OB}$
- B. $\overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB}$
- C. $\overrightarrow{AB} = \overrightarrow{OB} \overrightarrow{OA}$
- D. $\overrightarrow{OA} \cdot \overrightarrow{OC} = 0$
- E. $\left|\overrightarrow{OA}\right|^2 + \left|\overrightarrow{OC}\right|^2 = \left|\overrightarrow{OB}\right|^2$

Question 12 Vectors $3\tilde{k} - a\tilde{i}$, $\tilde{i} - b\tilde{j}$ and $2\tilde{j} - c\tilde{k}$ are linearly **in**dependent if the product $abc \in$

- A. $R \setminus \{3\}$
- B. $R \setminus \{-4,2\}$
- C. $R \setminus \{6\}$
- D. $R \setminus \{-3\}$
- E. $R \setminus \{2\}$



Question 13 \tilde{a} and \tilde{b} are any two non-parallel vectors of the same magnitude. The scalar resolute of \tilde{a} in the direction of $\tilde{a} + \tilde{b}$ is

- A. $\left| \widetilde{a} \right| + \frac{\widetilde{a} \, \widetilde{b}}{\left| \widetilde{a} \right|}$
- B. $\frac{1}{2}$ C. $\left|\tilde{b}\right| + \frac{\tilde{a}.\tilde{b}}{\left|\tilde{b}\right|}$
- D. $\frac{1}{\sqrt{2}}$ E. $\frac{1}{2} \left| \tilde{a} + \tilde{b} \right|$

Question 14 In terms of *a* the exact value of the definite integral $\int_{-\frac{a}{2}}^{\frac{a}{2}} \sqrt{a^2 - t^2} dt$ is

A.
$$\left(\frac{\pi}{6} - \frac{\sqrt{3}}{4}\right)a$$

B. $\left(\frac{\pi}{6} + \frac{\sqrt{3}}{4}\right)a$
C. $\left(\frac{\pi}{6} - \frac{\sqrt{3}}{4}\right)a^2$
D. $\left(\frac{\pi}{6} + \frac{\sqrt{3}}{4}\right)a^2$
E. $\frac{24a^2}{25}$

Question 15 Consider $y = (\tan^{-1} x)^2$, $x \in R$. The area of the region enclosed by the line $y = \frac{\pi^2}{16}$ and the curve $y = (\tan^{-1} x)^2$ is closest to

- A. 0.25
- B. 0.35
- C. 0.5
- 0.75 D.
- E. 1

Question 16 The differential equation $(\tan^{-1} x)^2 \frac{dy}{dx} - \frac{1}{1+x^2} = 0$ is equivalent to

- A. $t^{2} \frac{dy}{dt} 1 = 0$ where $t = \tan^{-1} x$ B. $t^{2} \frac{dy}{dt} - \frac{1}{1 + t^{2}} = 0$ where $t = \tan^{-1} x$
- C. $\frac{dy}{dt} \frac{1}{1+t^2} = 0$ where $t = \tan^{-1} x$
- D. $\frac{dy}{dt} t^2 = 0$ where $t = \tan^{-1} x$
- E. $\frac{dy}{dt} \frac{t}{1+t^2} = 0$ where $t = \tan^{-1} x$

Question 17 The graph of $y = (x^2 - 2.5x + 3.1)(x^2 + 2.5x + 3.1)$ has

- A. 3 stationary points and 2 inflection points
- B. 2 stationary points and 2 inflection points
- C. 1 stationary point and 2 inflection points
- D. 1 stationary point and 1 inflection point
- E. 1 stationary point and 0 inflection point

Question 18 The velocity of a particle at position $x \ge 0$ is given by $v = 2e^{-x} - 1$, and x = 0 initially. The velocity of the particle at time *t* is given by

A. $v = \frac{e^{t}}{2e^{-t} - 1}$ B. $v = \frac{e^{t}}{2e^{t} - 1}$ C. $v = \frac{1}{2e^{t} - 1}$ D. $v = \frac{e^{t}}{2 - e^{t}}$ E. $v = \frac{e^{t}}{2 - e^{-t}}$

Question 19 The momentum (in kg m s⁻¹) of a particle changes uniformly from $6\tilde{i} - 6\tilde{j} + 3.0\tilde{k}$ to $3\tilde{i} - 3\tilde{j} + 1.5\tilde{k}$ in 5.0 seconds. The magnitude of the resultant force on the particle is closest to

- A. 0.5 N
- B. 1.0 N
- C. 1.5 N
- D. 3.7 N
- E. 3.8 N

Question 20 The velocity-time graph of a particle in rectilinear motion is shown below. The average *speed* $(m s^{-1})$ of the particle in the first 40 seconds is closest to

- A. 3.9
- B. 3.85
- C. 3.8
- D. 3.4
- E. 2.5

 velocity(m/s)
 6

 6

 4

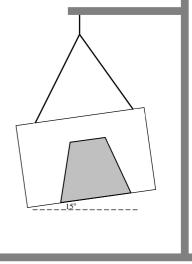
 2

 0
 5
 10
 15
 20
 25
 35
 40
 45

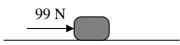
 -2

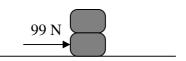
Question 21 A 1500 kg machine (shaded) is placed inside a 100 kg crate. It is *lowered* by a crane with a speed increasing at a rate of 0.8 m s^{-2} . The machine does not slide when the crate is tilted at an angle of 15° while it is lowered. The reaction force of the crate on the machine is

- A. 12500 N upward and perpendicular to the floor of the crate
- B. 13500 N upward and perpendicular to the floor of the crate
- C. 13500 N vertically upward
- D. 14400 N upward and perpendicular to the floor of the crate
- E. 14400 N vertically upward



Question 22 A *M* kg crate is pushed along a *rough* horizontal floor by a horizontal force of 99 N. The acceleration of the crate is 1.00 m s^{-2} . Another *M* kg crate is now stacked securely on top of the first crate. The acceleration is only 0.010 m s⁻² when the same force of 99 N is used to push the two crates.





The value of M is closest to

- A. 10
- B. 25
- C. 50
- D. 99
- E. 9900

SECTION 2 Extended-answer questions

Instructions for Section 2

Answer all questions.

A decimal approximation will not be accepted if an **exact** answer is required to a question. In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this exam are **not** drawn to scale. Take the **acceleration due to gravity** to have magnitude $g \text{ m s}^{-2}$, where g = 9.8.

Question 1 Consider the equation
$$\frac{z}{2} = \sqrt{a - \sqrt{a + \frac{z}{2}}}$$
 where $a \in R$ and $z \in C$
a. $\frac{z}{2} = \sqrt{a - \sqrt{a + \frac{z}{2}}}$ can be expressed in the form $z^4 + lz^2 + mz + n = 0$.
Find the values of l is and n in terms of a if processing.

Find the values of *l*, *m* and *n* in terms of *a* if necessary.

2 marks

b i. $z^4 + lz^2 + mz + n$ can be expressed in factorised form, $(z^2 + 2z + p)(z^2 + rz + q)$. Find the values of *p*, *q* and *r* in terms of *a* if necessary.

3 marks

c i. Find the values of *a* such that all the solutions of $z^4 + lz^2 + mz + n = 0$ are real. 1 mark

c ii. Find the values of *a* such that all the solutions of $z^4 + lz^2 + mz + n = 0$ have imaginary part. 1 mark

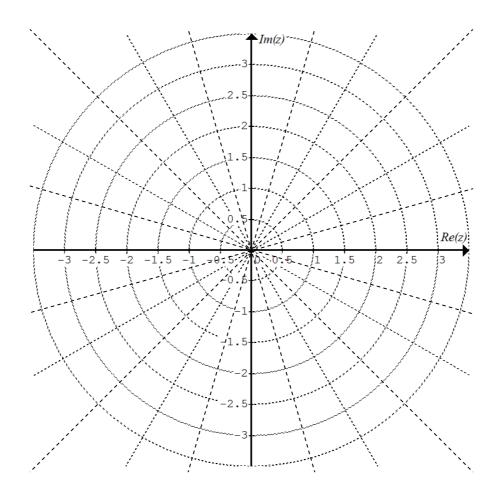
c iii. Find the values of *a* such that $z^4 + lz^2 + mz + n = 0$ has real solutions and solutions with imaginary part. 1 mark

© Copyright itute.com 2013

d i. Express in polar form the solutions to
$$\frac{z}{2} = \sqrt{a - \sqrt{a + \frac{z}{2}}}$$
 for $a = \frac{1}{2}$. 2 marks

d ii. Hence plot accurately the solutions on the grid below. Label each one in polar form.

2 marks



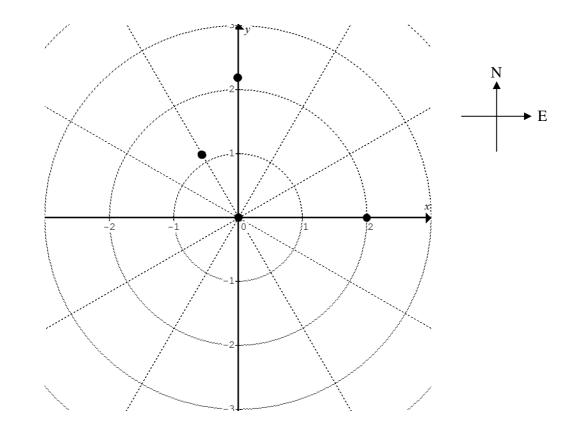
Question 2 The position of a particle moving in the *x*-*y* plane is given by $\tilde{r}(t) = \log_e(t+1)[\cos(t)\tilde{i} + \sin(t)\tilde{j}]$ for $t \ge 0$, where \tilde{i} and \tilde{j} are unit vectors pointing to the east (*x*-direction) and north (*y*-direction) respectively. Distance is measured in metres, time in seconds and speed in m s⁻¹.

a i. Find the initial position of the particle.

t	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{4\pi}{3}$	2π	$\frac{5\pi}{2}$
$\left \widetilde{r}\right $	0.00		0.72	0.94	1.13		1.99	2.18

a ii. Complete the following table (correct to two decimal places).

a iii. The positions of the particle at t = 0, $\frac{2\pi}{3}$, 2π and $\frac{5\pi}{2}$ are plotted on the following diagram. Label each point with t = 0, $\frac{2\pi}{3}$, 2π or $\frac{5\pi}{2}$. 1 mark

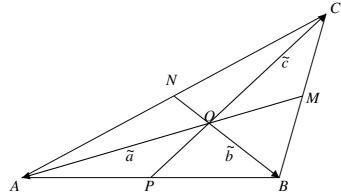


a iv. Plot on the above diagram the positions of the particle at $t = \frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{2}$ and $\frac{4\pi}{3}$. 2 marks

1 mark

b ii. Show that the initial velocity of the particle is \tilde{i} .	1 mark
b iii. On the diagram in part a iii draw the initial velocity vector of the particle at its initial position.	1 mark
b iv. Find <i>t</i> (correct to two decimal places) when the particle is first heading <i>south</i> .	2 marks

b v. What is the speed (correct to two decimal places) of the particle when it is first heading south? 1 mark



a. Express \overrightarrow{OM} and \overrightarrow{ON} in terms of \tilde{a} , \tilde{b} and \tilde{c} .

2 marks

2 marks

Let *m*, *n* and *p* be some positive real numbers such that $\overrightarrow{OM} = -m\widetilde{a}$, $\overrightarrow{ON} = -n\widetilde{b}$ and $\overrightarrow{OP} = -p\widetilde{c}$.

b i. Show that $2m\tilde{a} + \tilde{b} + \tilde{c} = \tilde{0}$ and $\tilde{a} + 2n\tilde{b} + \tilde{c} = \tilde{0}$.

Hence show/explain parts **b** ii to **b** v.

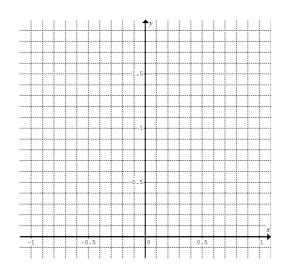
b ii.
$$(1-2m)\tilde{a} - (1-2n)\tilde{b} = \tilde{0}$$

1 mark

b iii. $m = n = \frac{1}{2}$.	1 mark
b iv. $\tilde{b} = -\tilde{a} - \tilde{c}$.	1 mark
b v. $\overrightarrow{AB} = -2\widetilde{a} - \widetilde{c}$.	1 mark
c i. Given $\overrightarrow{AP} = -\widetilde{a} - p\widetilde{c}$ and $\overrightarrow{AP} = k\overrightarrow{AB}$ where $k \in R$, show that $(2k-1)\widetilde{a} + (k-p)\widetilde{c} = \widetilde{0}$.	1 mark
c ii. Hence show that $p = k = \frac{1}{2}$.	1 mark
c iii. Explain why line segment \overline{CP} is a median of triangle <i>ABC</i> .	1 mark

Question 4 A top is formed by revolving $y = \sin^{-1} 2x$, $0 \le x \le \frac{1}{2}$, about the y-axis.

a. Draw an accurate graph of $y = \sin^{-1} 2x$, $0 \le x \le \frac{1}{2}$, showing the exact coordinates of the end points.



b. Find the exact coordinates of the point where the gradient of the curve $y = \sin^{-1} 2x$ is 4. 2 marks

c. Find the exact area under the curve $y = \sin^{-1} 2x$, $0 \le x \le \frac{1}{2}$.

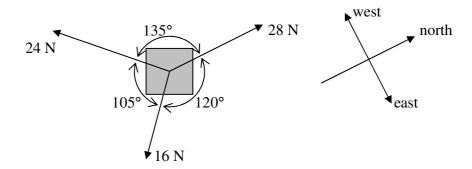
3 marks

2 marks

d. The top is cut from a rectangular block of wood of dimensions 1 unit \times 1 unit \times 2 units. Find the exact volume of wood to be removed from the block to make the top.

e. The shape of a dowel is formed by revolving $y = \frac{1}{\sqrt{(\frac{1}{2})^2 - x^2}}$, $x \ge 0$ and $y \le 10$, about the y-axis. Find the exact volume of the dowel. 3 marks

Question 5 A box on a rough horizontal floor is pulled by three forces as shown in the following diagram (not drawn to scale). The box is in *limiting* equilibrium. The coefficient of friction is 0.25 between the box and the floor. The 28-N force is directed towards the north.



a. Determine the magnitude (N) and direction (degrees) of the resultant of the three pulling forces, correct to one decimal place. 3 marks

b. Write down the magnitude and direction (correct to one decimal place) of the force of friction on the *floor*. 1 mark

c. Calculate the mass (kg) of the box, correct to one decimal place.

d. Determine the magnitude (in m s⁻², correct to one decimal place) and direction of the acceleration of the box when the 24 N force is increased to $20\sqrt{2}$ N. 3 marks

End of Exam 2

1 mark