The Mathematical Association of Victoria

Trial Exam 2013 SPECIALIST MATHEMATICS Written Examination 1

STUDENT NAME

Reading time: 15 minutes Writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of Book

Number of questions	Number of questions to be answered	Number of marks
10	10	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers,
- Students are NOT permitted to bring into the examination room: notes of any kind, a calculator of any type, blank sheets of paper and/or white out liquid/tape.

Materials supplied

• Question and answer book of 13 pages with a detachable sheet of miscellaneous formulas at the back.

Instructions

- Detach the formula sheet from the back of this book during reading time.
- Write your name in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

Instructions

Answer **all** questions in the spaces provided.

Unless otherwise specified an **exact** answer is required to a question.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Take the **acceleration due to gravity** to have magnitude $g \text{ m/s}^2$, where g = 9.8

Question 1 (2 marks)

A particular rope will break if its tension exceeds 200g newtons.

Find in terms of *g* the greatest acceleration an 80 kg mass can be given when pulled vertically upwards by this rope.

Question 2 (3 marks)

The angle between the two vectors

2i - j + 3k and ai - 6j - 2k, where $a \in R$

is $\frac{2\pi}{3}$. Find the value of *a*.

Question 3 (5 marks)

Consider the hyperbola $\frac{(y-1)^2}{2} - \frac{(x+2)^2}{k} = 1$ where k is a positive real number.

a. Find in terms of x, y and k an expression for the gradient at any point on the hyperbola. 2 marks

b. The line 7y - 3x = -11 is normal to the hyperbola at a point where x = -1. Find the value of k in simplest form.

Question 4 (2 marks)

Relative to an origin O, an object has an acceleration vector given by

$$a(t) = \left(\frac{1}{1+t^{2}}\right) \stackrel{i}{\sim} - \frac{1}{(t+1)^{2}} \stackrel{j}{\sim} - \left(\frac{1}{t+1}\right) \stackrel{k}{\sim}, \quad t \ge 0.$$

~ ~ ~

At t = 0 the velocity of the object is i - j + k.

Find the velocity vector of the object at time *t*.

Question 5 (3 marks)

Consider the graph with rule $\left|\frac{z+1-2i}{z+2-i}\right| = 1$ where $z \in C$.

Write this rule in simplest cartesian form.

Question 6 (5 marks)

a. Express $\frac{1}{x^3 - 2x^2 + x}$ in partial fraction form.

$x^{-} - 2x^{-} + x$		

b. Find the general solution to $\frac{dy}{dx} - \frac{x+1}{\sqrt{1-3x^2}} = 0.$

Question 7 (4 marks)

Consider the function $f:[0,\pi) \to R$, $f(x) = \tan\left(\frac{x}{2}\right)$.

The region enclosed by the graph of y = f(x), the x-axis and the vertical line through the point with ycoordinate $y = \frac{1}{\sqrt{3}}$ is rotated about the x-axis to form a solid of revolution.

Find the volume of this solid in the form $\frac{a\sqrt{b\pi} + c\pi^2}{b}$, where *a*, *b* and *c* are integers.

Question 8 (4 marks)

The displacement, x m, of a body from a fixed point O after t seconds is given by

$$x = v - v^2$$

where v m/s is the velocity of the body. At t = 0, v = 1 and x = 0.

b. Find the time at which $v = \frac{1}{2}$.

2 marks

Question 9 (4 marks)

Find all solutions to $1 + \cos(2\theta) = \sqrt{3}\sin(2\theta)$ over the domain $-\pi \le \theta \le \pi$.

Question 10 (8 marks)

a.

Write $1 - i\sqrt{3}$ in polar form.		
i. Find all values of $m \in Z^+$ such that $(\sqrt{3} + i)^m = (1 - i\sqrt{3})^m$.	3 marks	

b. Find in the form a + ib where $a, b \in R$ all numbers $z \in C$ such that $z^2 = i\overline{z}$.