

NAME: _____

VCE SPECIALIST MATHEMATICS

Practice Written Examination 1

Reading time: 15 minutes

Writing time: 1 hour

QUESTION AND ANSWER BOOK Structure of book

Number of	Number of questions	Number of
questions	to be answered	marks
8	8	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are **not** permitted to bring into the examination room: notes of any kind, a calculator of any type, blank sheets of paper and/or white out liquid/tape.

Materials supplied

- Question and answer book of 10 pages.
- Formula booklet of 5 pages.
- Working space is provided throughout the book.

Instructions

- All written responses must be in English.
- Write your student name in the space provided above on this page.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

This page is blank

Ser2SME1

Instructions

Answer **all** questions in the spaces provided.

Unless otherwise specified an exact answer is required to a question.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Take the acceleration due to gravity to have magnitude $g m/s^2$, where g = 9.8.

Question 1

a. Sketch the graphs of $f(x) = x + \frac{3}{x}$ and g(x) = 4, on the axes below, showing any relevant asymptotes, turning points and/or points of intersection between f(x) and g(x).

b. Find the volume when the area bounded between f(x) and g(x) is rotated about the x -axis.

2 marks

Ser2SME1

©2013

In the diagram below, OABCDEFG is a cube of side length 2 units.

Unit vectors **i**, **j**, **k** are parallel to \overrightarrow{OA} , \overrightarrow{OC} , \overrightarrow{OD} respectively. Points M and N are the midpoints of AB and DE respectively, and point P is the location on the OM that is closest to point N.

Express the following vectors in terms of **i**, **j**, **k**.

a. \overrightarrow{OM} and \overrightarrow{ON}

b. \overrightarrow{OP}	2 marks
c. \overrightarrow{PN}	2 marks
	1 mark
©2013	Ser2SME1
Published by QATs. Permission for copying in purchasing school only.	4

Consider the polynomial $P(z) = z^3 - 6z - 9$, $z \in \mathbb{C}$.

a. If
$$\omega = -\frac{3}{2} + \frac{i\sqrt{3}}{2}$$
, find $|\omega|$ and $Arg(\omega)$.

- **b.** Given that $P(\omega) = 0$, show that $(z^2 + 3z + 3)$ is also factor of P(z).
- c. Hence find a, in $P(z) = (z a)(z^3 6z 9)$.

©2013

3 marks

Ser2SME1

Published by QATs. Permission for copying in purchasing school only.

d. Sketch $S = \{z \in \mathbb{C} : P(z) = 0\}$ on the Argand diagram below. Im(z)

2 marks

1 mark

1 mark

a. Show that
$$\frac{2}{1+\cos(4\theta)} = \sec^2(2\theta)$$
.

b. Hence, find
$$\int_0^{\pi/12} \frac{2}{1+\cos(4\theta)} d\theta$$
.

2 marks

1 mark

©2013

Published by QATs. Permission for copying in purchasing school only.

6

Ser2SME1

->

d. Hence solve the equation
$$\frac{1}{1+\cos(4\theta)} = 2$$
 for $\theta \in \left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$.

2 marks

©2013

Published by QATs. Permission for copying in purchasing school only.

Find the gradient of the tangent to the curve $xy + y^2 + \arctan(x) = 6 + \frac{\pi}{4}$ at the point (1,2).

Question 6

©2013

3 marks

Let $y = x \arcsin(e^c x)$, $x \ge 0$

a. Assuming $x \ge 0$, show that $\tan(\arcsin(e^c x)) = \frac{e^c x}{\sqrt{1 - e^{2c} x^2}}$

1 mark

b. Hence, find the value of a given that $\frac{dy}{dx} = a\frac{y}{x} + \tan\left(\frac{y}{x}\right)$, where a is a real constant.

2 marks

Ser2SME1

c. If
$$y(1) = \frac{\pi}{4}$$
, find the value of *c* in the form $\frac{\log_e(\frac{1}{a})}{b}$ where *a*, *b* are positive integers.

1 mark

Question 7

The position of a particle at time t is given by

$$\mathbf{r}(t) = \frac{6t}{1+t^3}\mathbf{i} + \frac{6t^2}{1+t^3}\mathbf{j}, \ t \in \mathbb{R}$$

a. Find velocity vector **v**.

b. For points on the curve, find the greatest value of *x*.

2 marks

2 marks

Published by QATs. Permission for copying in purchasing school only.

©2013

A box of mass 4 kg is resting on a rough horizontal plane. The box is pushed downwards with a force of magnitude P newtons acting at an angle of 30° to the horizontal. The box is in equilibrium. The coefficient of friction between the box and the plane is 0.5.

a. On the diagram below, show all forces acting on the box and label them. (You may assume that all forces, including contact forces, act through the centre of mass).

1 mark

b. Find, in terms of *P*, the normal component and frictional component of the contact force acting between the box and the plane.

c. Find the value of *P* when the box is just about to slide.

2 marks

2 marks

Ser2SME1

SPECIALIST MATHEMATICS

Written examinations 1 and 2

FORMULA SHEET

Directions to students

Detach this formula sheet during reading time.

©2013

Specialist Mathematics Formulas

Mensuration

area of a trapezium:	$\frac{1}{2}(a+b)h$
curved surface area of a cylinder:	$2\pi rh$
volume of a cylinder:	$\pi r^2 h$
volume of a cone:	$\frac{1}{3}\pi r^2 h$
volume of a pyramid:	$\frac{1}{3}Ah$
volume of a sphere:	$\frac{4}{3}\pi r^3$
area of a triangle:	$\frac{1}{2}bc\sin A$
sine rule:	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
cosine rule:	$c^2 = a^2 + b^2 - 2 ab \sin C$

Coordinate geometry

ellipse:
$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$
 hyperbola: $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$

Circular (trigonometric) functions

$\cos^2(x) + \sin^2(x) = 1$	$\sin(2x) = 2\sin(x)\cos(x)$
$1 + \tan^2(x) = \sec^2(x)$	$\cot^2(x) + 1 = \csc^2(x)$
$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$	$\sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y)$
$\cos(x + y) = \cos(x)\cos(y) - \sin(x)\sin(y)$	$\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y)$
$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$	$\tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$

©2013

Ser2SME1

$\cos(2x) = \cos^2(x) - \sin^2(x)$	$2\tan(x)$
$= 2\cos^2(x) - 1$	$\tan(2x) = \frac{2\tan(x)}{1 + \cos^2(x)}$
$= 1 - 2\sin^2(x)$	$1 - \tan^2(x)$

function	sin ⁻¹	cos ⁻¹	tan ⁻¹
domain	[-1,1]	[-1,1]	R
range	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	[0, π]	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

Algebra (complex numbers)

$z = x + iy = r(\cos \theta + i \sin \theta) = r \operatorname{cis} \theta$	
$ z = \sqrt{x^2 + y^2} = r$	$-\pi < Arg(z) \le \pi$
$z_1 z_2 = r_1 r_2 \operatorname{cis} \left(\theta_1 + \theta_2\right)$	$\frac{z_1}{z_2} = \frac{r_1}{r_2} cis \left(\theta_1 - \theta_2\right)$
$z^n = r^n \mathrm{cis}(n heta)$ (de Moivre's theorem)	

Calculus

$\frac{\mathrm{d}}{\mathrm{d}x}(x^n) = nx^{n-1}$	$\int x^{n} dx = \frac{1}{n+1} x^{n+1} + c, n \neq -1$
$\frac{\mathrm{d}}{\mathrm{d}x}(e^{ax}) = ae^{ax}$	$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$
$\frac{\mathrm{d}}{\mathrm{d}x}(\log_e(x)) = \frac{1}{x}$	$\int \frac{1}{x} \mathrm{d}x = \log_e x + c$
$\frac{\mathrm{d}}{\mathrm{d}x}(\sin\left(ax\right)) = a\cos(ax)$	$\int \sin(ax) \mathrm{d}x = \frac{1}{a} \cos(ax) + c$
$\frac{\mathrm{d}}{\mathrm{d}x}(\cos\left(ax\right)) = -a\sin(ax)$	$\int \cos(ax) \mathrm{d}x = -\frac{1}{a}\sin(ax) + c$
$\frac{\mathrm{d}}{\mathrm{d}x}(\tan\left(ax\right)) = a\sec^2(ax)$	$\int \sec^2(ax) \mathrm{d}x = \frac{1}{a}\tan(ax) + c$

©2013

Ser2SME1

$\frac{d}{dx}(\sin^{-1}(x)) = \frac{1}{\sqrt{1-x^2}}$	$\int \frac{1}{\sqrt{a^2 - x^2}} \mathrm{d}x = \sin^{-1}(ax) + c, a > 0$
$\frac{d}{dx}(\cos^{-1}(x)) = \frac{-1}{\sqrt{1-x^2}}$	$\int \frac{-1}{\sqrt{a^2 - x^2}} \mathrm{d}x = \cos^{-1}(ax) + c, a > 0$
$\frac{\mathrm{d}}{\mathrm{d}x}(\tan^{-1}(x)) = \frac{1}{1+x^2}$	$\int \frac{a}{a^2 + x^2} dx = \sin^{-1}(ax) + c$

product rule:	$\frac{\mathrm{d}}{\mathrm{d}x}(uv) = u\frac{\mathrm{d}}{\mathrm{d}x}(v) + v\frac{\mathrm{d}}{\mathrm{d}x}(u)$
quotient rule:	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{d}{dx}(u) - u\frac{d}{dx}(v)}{v^2}$
chain rule:	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$

Euler's method:	$\frac{dy}{dx} = f(x), x_0 = a \text{ and } y_0 = b$ $\Rightarrow x_{n+1} = x_n + h, \ y_{n+1} = y_n + hf(x_n)$
acceleration:	$a = \frac{d^2x}{dx^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$
constant (uniform) acceleration:	$v = u + at, s = ut + \frac{1}{2}at^2, v^2 = u^2 + 2as, s = \frac{1}{2}(u + v)t$

Vectors in two and three dimensions

$\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$	
$ \mathbf{r} = \sqrt{x^2 + y^2 + z^2} = r$	$\mathbf{r}_1 \cdot \mathbf{r}_2 = r_1 r_2 \cos(\theta) = x_1 x_2 + y_1 y_2 + z_1 z_2$
$\dot{\mathbf{r}} = \frac{d\mathbf{r}}{dt} = \frac{dx}{dt}\mathbf{i} + \frac{dy}{dt}\mathbf{j} + \frac{dz}{dt}\mathbf{k}$	

©2013

Ser2SME1

Mechanics

momentum:	$\mathbf{p} = m\mathbf{v}$
equation of motion:	$\mathbf{R} = m\mathbf{a}$
friction:	$F \leq \mu N$

Solution Pathway

Below are sample answers. Please consider the merit of alternative responses.

Specialist Mathematics Exam 1: SOLUTIONS

Question 1

a.

3 marks

b.

$$V = \pi \int_{1}^{3} g^{2}(x) - f^{2}(x) dx$$

= $\pi \int_{1}^{3} 10 - \frac{9}{x^{2}} - x^{2} dx$ (M1)
= $\frac{16\pi}{3}$ cubic units (A1)

2 marks

©2013

Published by QATs. Permission for copying in purchasing school only.

$$\overrightarrow{OM} = 2\mathbf{i} + \mathbf{j}, \qquad (A1)$$
$$\overrightarrow{ON} = \mathbf{i} + 2\mathbf{k} \qquad (A1)$$

2 marks

b.

$$\overrightarrow{OP} = proj_{\overrightarrow{ON}}(\overrightarrow{OM})$$

$$= \left(\frac{\overrightarrow{ON}.\overrightarrow{OM}}{\overrightarrow{OM}}\right)\overrightarrow{OM} \quad mostly \ correct(M1)$$

$$= \frac{4}{5}\mathbf{i} + \frac{2}{5}\mathbf{j} \qquad (A1)$$

2 marks

c.

$$\overrightarrow{PN} = \overrightarrow{ON} - \overrightarrow{OP} = \frac{14}{5}\mathbf{i} - \frac{2}{5}\mathbf{j} + 2\mathbf{k} \quad (A1)$$

Question 3

a.

$$|\omega| = \sqrt{\left(-\frac{3}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{3}, \qquad (A1)$$
$$Arg(\omega) = \arctan\left(\frac{\left(\frac{\sqrt{3}}{2}\right)}{\left(-\frac{3}{2}\right)}\right) + \pi = \frac{5\pi}{6} \qquad (A1)$$

1 mark

2 marks

b.

Coefficients of P(z) are real, so conjugate root theorem applies $\Rightarrow P(\overline{\omega}) = 0$ $\therefore (z - \omega)(z - \overline{\omega}) = (z^2 + 3z + 3)$ is also a factor. (R1)

c.

$$P(z) = z^{3} - 6z - 9$$

= $(z - a)(z^{2} + 3z + 3)$ expanding and equating like terms
= $z^{3} + (3 - a)z^{2} + (3 - 3a)z - 3a$
 $\therefore a = 3$ (A1)

1 mark

Ser2SME1

©2013

Published by QATs. Permission for copying in purchasing school only.

17

d.

3 marks

Question 4

a.

$$cos(4 \theta) = 2 cos^{2}(2\theta) - 1$$

$$\Rightarrow \frac{cos(4 \theta) + 1}{2} = cos^{2}(2\theta) \quad Attempt to use double angle cos(M1)$$

$$\therefore \frac{2}{1 + cos(4 \theta)} = sec^{2}(2\theta)$$

1 mark

©2013

Published by QATs. Permission for copying in purchasing school only.

b.

c.

$$\int_{0}^{\pi/12} \frac{2}{1 + \cos(4\theta)} d\theta = \int_{0}^{\pi/12} \sec^{2}(2\theta) d\theta$$

$$\Rightarrow \qquad \qquad = \frac{1}{2} \int_{0}^{\pi/12} \frac{d}{d\theta} (\tan(2\theta)) d\theta \quad mostly \ correct \ (M1)$$

$$= \frac{1}{2} [\tan(2\theta)]_{0}^{\pi/12}$$

$$= \frac{1}{2\sqrt{3}}$$
(A1)

2 marks

2 marks

d.

$$\frac{1}{1 + \cos(4\theta)} = 2$$

$$\Rightarrow \quad \sec^2(2\theta) = 4 \quad mostly \ correct \ (M1)$$

$$\Rightarrow \quad \cos(2\theta) = \pm \frac{1}{2}$$

$$\Rightarrow \quad 2\theta \in \{-\frac{\pi}{3}, \frac{\pi}{3}\}$$

$$\therefore \qquad \theta \in \{-\frac{\pi}{6}, \frac{\pi}{6}\} \qquad (A1)$$

2 marks

©2013

Ser2SME1

Published by QATs. Permission for copying in purchasing school only.

19

differentiate both sides wrt x

$$y + x \frac{d}{dx}(y) + 2y \frac{d}{dx}(y) + \frac{1}{1 + x^2} = 0 \qquad \text{mostly correct (M1)}$$
$$\frac{d}{dx}(y) = \frac{-y - \frac{1}{(1 + x^2)}}{x + 2y} \qquad (A1)$$
$$\frac{d}{dx}(y)\Big|_{(1,2)} = -\frac{1}{2} \qquad (A1)$$

3 marks

Question 6

a. Let $\theta = \arcsin(e^c x) \Rightarrow \sin(\theta) = \frac{e^c x}{1} = \frac{opp}{hyp}$ Using Pythagoras' Theorem

 $\tan(\arcsin(e^c x)) = \tan(\theta) = \frac{opp}{adj} = \frac{e^c x}{\sqrt{1 - e^{2c} x^2}} \qquad mostly \ correct \ (M1)$

1 mark

$$\frac{dy}{dx} = \frac{d(x \arcsin(e^c x))}{dx} = \arcsin(e^c x) + x \frac{e^c}{\sqrt{1 - e^{2c} x^2}}$$
$$= \arcsin(e^c x) + \tan(\arcsin(e^c x)) \quad (M1)$$
$$= \frac{y}{x} + \tan\left(\frac{y}{x}\right)$$
$$\therefore a = 1 \qquad (A1)$$

2 marks

c.

b.

$$y(1) = \frac{\pi}{4} \implies \arcsin(e^c) = \frac{\pi}{4}$$
$$e^c = \sin\left(\frac{\pi}{4}\right)$$
$$\therefore c = \ln\left(\sin\left(\frac{\pi}{4}\right)\right) = \frac{\log_e\left(\frac{1}{2}\right)}{2} \quad (A1)$$

1 mark Ser2SME1

©2013

Published by QATs. Permission for copying in purchasing school only.

20

a.

$$\mathbf{v} = \frac{d}{dt} \left(\frac{6t}{1+t^3} \right) \mathbf{i} + \frac{d}{dt} \left(\frac{6t^2}{1+t^3} \right) \mathbf{j}$$
(M1)
$$= \frac{6(1-2t^3)}{(1+t^3)^2} \mathbf{i} + \frac{6t(2-t^3)}{(1+t^3)^2} \mathbf{j}$$
(A1)

2 marks

b.

maximum
$$x \Rightarrow \mathbf{i} \cdot \mathbf{v} = 0$$
 $\frac{dx}{dt} = 0$ (M1)
 $\Rightarrow (1 - 2t^3) = 0$
 $t = 1/\sqrt[3]{2}$
 $\therefore x(1/\sqrt[3]{2}) = 2\sqrt[3]{4}$ (A1)

2 marks

Question 8

a.

1 mark

©2013

Published by QATs. Permission fe	for copying i	n purchasing s	chool only.
----------------------------------	---------------	----------------	-------------

b.

Resolving along the plane $F_r = P \cos (30^\circ)$ $\sqrt{3}$

$$= \frac{\sqrt{3}}{2}P \qquad (A1)$$

 $Resolving\ perpendicular\ to\ the\ plane$

$$N = P\sin(30^\circ) + 4g$$
$$= \frac{P}{2} + 4g \qquad (A1)$$

2 marks

c.

Limiting Friction

$$F_r = \frac{1}{2}N$$

$$\frac{\sqrt{3}}{2}P = \frac{1}{2}\left(\frac{P}{2} + 4g\right) \quad (M1)$$

$$\therefore P = \frac{8g}{2\sqrt{3} - 1} \quad (A1)$$

2 marks

©2013

Published by QATs. Permission for copying in purchasing school only.