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The Mathematical Association of Victoria 
 

SPECIALIST MATHEMATICS 2014 
 

Trial Written Examination 1 - SOLUTIONS 
 
Question 1 

a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 All three forces (it is acceptable for the friction force to be labelled frictionF  etc.) [A1] 

Total 1 mark 
 
Comment: 

The forces acting on the body are: 

�  Normal reaction force R perpendicular to the plane. 

�  Weight force 6mg g= =  down. 

�  Friction force of size 2 3
3

R Rµ =  (because the body is sliding) and the force is acting down the plane 

because the body is sliding up the plane and the friction force opposes the motion. 
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b. 
●  Resolve forces parallel to the plane (the direction of motion of the body ‘up the plane’ is taken as the positive 
direction): 
 

amaFnet 6== . 

gmgRFnet 3
3
32)30sin( o −

−
=−−= µ . 

 

Therefore: gRa 3
3
326 −

−
= . …. (1) [A1] 

 
●  Resolve forces perpendicular to the plane (upwards is taken as the positive direction): 
 

0=netF . 

gRmgRFnet 33)30cos( o −=−= . 
 
Therefore: gR 330 −=  
 
 gR 33=⇒ . …. (2) 
 
Substitute equation (2) into equation (1): 
 

( ) ggga 9333
3
326 −=−

−
=  

 

2
3ga −=⇒ . [A1] 

Substitute 
2
3ga −= , 3=u m/s and 0=v m/s into 222 uvas −=  and solve for s: 

 

g
s 3
=  metres. [A1] 

Total 4 marks 
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Question 2 

a. 
Method 1: Convert the complex numbers into polar form. 
 

⎟
⎠

⎞
⎜
⎝

⎛
−=−−=
6
5cis4232 πiu . Only the argument is required. [A1] 

 

⎟
⎠

⎞
⎜
⎝

⎛
=+−=

3
2cis231 πiv . Only the argument is required. [A1] 

 

3
2

6
5 ππ

−−
2
3

6
9 ππ

−=−= . 

 
Therefore: 
 

3Arg 2
2 2

u
v

π π
π⎛ ⎞ = − + =⎜ ⎟

⎝ ⎠
. [A1] 

Total 3 marks 
 
 
 
Method 2: 
 

)31(
)31(

)31(
)232(

13
232

i
i

i
i

i
i

−−

−−
×

+−

−−
=

−

−−  

 
 

4
322632 −++

=
ii  [A1] 

 

ii 2
4
8
== . [A1] 

 

2
)2(Arg π
=i . [A1] 

Total 3 marks 
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b. 
Method 1: 

Since all the coefficients are real, it follows from the conjugate root theorem that 2
2
3 i−−  is also a root of )(zp . 

 

Therefore 2
2
3 iz −+  and 2

2
3 iz ++  are linear factors of )(zp . 

 
Therefore a quadratic factor of )(zp  is 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥⎦

⎤
⎢⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎥⎦

⎤
⎢⎣

⎡
+=⎟

⎠

⎞
⎜
⎝

⎛
++⎟

⎠

⎞
⎜
⎝

⎛
−+ 2

2
32

2
32

2
32

2
3 iziziziz  

 

2
2
3 2

+⎟
⎠

⎞
⎜
⎝

⎛
+= z  

 

4
1732 ++= zz . [A1] 

 

By equating the coefficients of )(
4
1732 βα −⎟
⎠

⎞
⎜
⎝

⎛
++ zzz  with )(zp  (the coefficient of 3z  is 4 and the constant 

term is 34− ) it follows that )84( −z  is also linear factor of )(zp . Therefore: 
 

)84(
4
173)( 2 −⎟
⎠

⎞
⎜
⎝

⎛
++= zzzzp  [M1] 

 
)2)(17124( 2 −++= zzz  

 
34744 23 −−+= zzz . 

 
 
Therefore 4=a  and 7−=b . Both values. [A1] 

Total 3 marks 
 
 
 
Method 2: 

Let two of the roots be α  and β . 

Then a quadratic factor is αββαβα ++−=−− zzzz )())(( 2 . 

2
2
3 i+−=α  (given) and 2

2
3 i−−==αβ  (from the conjugate root theorem). 

Therefore: 

3−=+ βα . 

( )
4
172

2
3 2
2

=+⎟
⎠

⎞
⎜
⎝

⎛
−=αβ . 

So a quadratic factor is 
4
1732 ++ zz . 
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Question 3 

Substitute xu 23 −= : [M1] 
 

●  
2

2
−

=⇒−=
dudx

dx
du .  

 

●  
2
3 ux −

= . 

 

●  2
2
1

=⇒= ux   and  11 =⇒= ux . 

 
 

●  dx
x

x∫ −

−
1

2/1

 
23
1  

 
 

⎟
⎠

⎞
⎜
⎝

⎛
−

−
−

=∫ 2
 

1
2

3
1

2

du
u

u

 [M1] 

 
 

du
u
u∫ −

−=

1

2

 1
4
1  

 
 

duuu∫ −−= −

1

2

2/12/1  
4
1  [M1] 

 
 

1

2

2/32/1

3
22

4
1

⎥⎦

⎤
⎢⎣

⎡
−−= uu  

 
 

6
22 −

= . [A1] 

 
  Round the final total DOWN to the nearest integer 

 
Total 4 marks 
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Question 4 

a. 
amaF 3== . 

 
21 xv −=  

 

)2)(1( 2 xx
dx
dvva −−==⇒ . 

 
Therefore: 
 

)1(6)2)(1(3 22 xxxxF −−=−−= . [A1] 
 

Substitute 
3
2

=x : 

 

9
20

27
60

−=−=F  

Answer:  
9
20

27
60

−=−=F . [A1] 

Total 2 marks 
 
 
b. 

21 xv −=  
 

21 x
dt
dx

−=⇒  

 

21
1
xdx

dt
−

=⇒  [M1] 

 
 

dx
x

t  
1

1
2/3

0

2∫ −
=⇒  (because the total time is the area of the region bounded by 

21
1
x

y
−

=  

  and the x-axis between 0=x  and 
3
2

=x ) 

 
 

dx
x

 
1

1
2/3

0

2∫ −
=  (since 0

1
1
2 >− x

 for 
3
20 << x ) 

 

dx
x
B

x
A  

11

2/3

0
∫ +

+
−

= . [M1] 
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Partial fraction calculation: 
 

x
B

x
A

x +
+

−
=

− 111
1
2

 

 

21
)1()1(

x
xBxA

−

−++
=  

 
)1()1(1 xBxA −++=⇒    for all values of x. 

 
There are two options for finding the values of A and B: 
 

Option 1:  Substitute convenient values of x into 
)1()1(1 xBxA −++= . 

Substitute 1=x :  
2
121 =⇒= AA . 

Substitute 1−=x :  
2
121 =⇒= BB . 

Option 2:  Use simultaneous equations. 

Expand and group like terms: 

BAxBA ++−= )(1 . 

Equate coefficients of powers of x: 

BA −=0 .                              …. (1) 

Equate constant terms: 

BA +=1 .                               …. (2) 

Solve equations (1) and (2) simultaneously: 

2
1

=A   and  
2
1

=B . 

 

2
1

=A   and  
2
1

=B . [A1] 

 
Therefore: 
 
 

dx
xx

t  
1

1
1

1
2
1

2/3

0
∫ +

+
−

=  

 
 

3/2

01
1log

2
1

⎥
⎦

⎤
⎢
⎣

⎡

−

+
=

x
x

e  

 
 

)5(log
2
1

1
1

log
2
1

3
2
3
2

ee =
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

+
=   seconds. Unit not essential. [A1] 

Total 4 marks 
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Question 5 

Use implicit differentiation with respect to x: 
 

72)1(3 22 =−−+ xxyy  
 

0222)1(6 =−−−+⇒ x
dx
dyxy

dx
dyy . [M1] 

 

Substitute 0=
dx
dy  and simplify: 

 
xy −= .  [M1] 

 
Solve the pair of equations 
 

72)1(3 22 =−−+ xxyy  …. (1) 
 

xy −=   …. (2) 
 
simultaneously for y. Substitute equation (2) into equation (1): 
 

7)()(2)1(3 22 =−−−−+ yyyy  
 
Expand, re-arrange and simplify: 
 

0232 2 =−+⇒ yy  [A1] 
 

0)12)(2( =−+⇒ yy  
 

12,  
2

y⇒ = − . 

 
Therefore the equations of the tangents are 
 

2−=y  and 
2
1

=y . [A1] 

Total 4 marks 
 
Alternate method (very inefficient and time consuming): 

72)1(3 22 =−−+ xxyy  
 
Expand, re-arrange and simplify: 
 

0)4()26(3 22 =+−−+⇒ xyxy  
 
Use the quadratic formula to solve for y: 
 

6
)4(3)3(262 222 xxx

y
++−±−

=  
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Now calculate 
dx
dy  and solve 0=

dx
dy  etc. 

 

 

Question 6 

tt −−=+−−=⋅ 224ba
~~

. …. (1) 

 

)cos(53)cos(b aba 2
~~~~

θθ t+==⋅ . …. (2) [M1] 

 
Equate equations (1) and (2): 
 

)cos(532 2 θtt +=−−  
 

)(cos)5(9)2( 222 θtt +=−−⇒   [M1] 
 

)(cos)5(9)2( 222 θtt +=+⇒ . …. (3) 
 
 

9
54)sin( =θ  

 

81
80)(sin 2 =⇒ θ  

 

81
1)(cos 2 =⇒ θ . 

 
Substitute into equation (3): 
 

)5(
9
1)2( 22 tt +=+⇒   [A1] 

 
22 5)2(9 tt +=+⇒  

 
031368 2 =++⇒ tt . 

 
 
Option 1: Complete the square. 

⎟
⎠

⎞
⎜
⎝

⎛
++=++
8
31

2
9831368 22 tttt       

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−⎥⎦

⎤
⎢⎣

⎡
+=

8
31

16
81

4
98
2

t       31
2
81

4
98
2

+−⎥⎦

⎤
⎢⎣

⎡
+= t       

2
19

4
98
2

−⎥⎦

⎤
⎢⎣

⎡
+= t : 

 

0
2
19

4
98
2

=−⎥⎦

⎤
⎢⎣

⎡
+t  

 

16
19

4
9 2

=⎥⎦

⎤
⎢⎣

⎡
+⇒ t  
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4
19

4
9

±=+⇒ t  

 

4
199 ±−

=⇒ t . [A1] 

 

 

Option 2: Use the quadratic formula. 

3132362 ×−=Δ  

1916)3129(4 22 ×=×−= . 
 
Therefore: 
 

4
199

16
19436

16
191636 ±−

=
±−

=
×±−

=t . [A1] 

Total 4 marks 
 

 

Question 7 

( ) ( )
~~

2~
~

j)cos()sin(i)sin()cos(2
r

v ttttttt
dt

d
+−−== . [A1] 

 
 
Substitute π=t : 
 

( ) ( )
~~

2
~

j)cos()sin(i)sin()cos(2v πππππππ +−−=  

 

~~
ji2 ππ +−= . [A1] 

 

Speed 22
~

)2(v ππ +−==  

 
π5= . [A1] 

Total 3 marks 
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Question 8 

angent

1

t
normal m
m −

=  and 
dx
dym =tangent . 

 

Use the chain rule to get 
dx
dy . 

Let 
x

u 3
= . 

 

dx
du

du
dy

dx
dy

×=  where: 

 

●  
2
3
xdx

du
−=  

 
●  )(cos 1 uy −= . 
 

●  
21

1

udu
dy

−

−
= . 

 
 
Therefore: 
 

⎟
⎠

⎞
⎜
⎝

⎛
−×

−

−
= 22

3

1

1
xudx

dy  

 
 

⎟
⎠

⎞
⎜
⎝

⎛
−×

⎟
⎠

⎞
⎜
⎝

⎛
−

−
= 22

3

31

1
x

x

. [M1] 

 
 
Substitute 32−=x : 
 

⎟
⎠

⎞
⎜
⎝

⎛
−×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

−
=

12
3

32
31

1
2dx

dy  

 
 

⎟
⎠

⎞
⎜
⎝

⎛
−×

−

−
=

12
3

4
31

1  

 
 

2
1

=  [A1] 

 
2−=⇒ normalm . 
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Substitute 32−=x  into ⎟
⎠

⎞
⎜
⎝

⎛
= −

x
y 3cos 1 : 

 
 

6
5

2
3cos

32
3cos 11 π

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−
= −−y . 

 
 
Equation of normal: 
 

)32(2
6
5

+−=− xy π  
6
5342 π

+−−=⇒ xy . Any correct form. [A1] 

Total 3 marks 
 
 
 
Comment: 

The following is NOT required but is included as a teaching point (see line *). 
 
 

⎟
⎠

⎞
⎜
⎝

⎛
−×

⎟
⎠

⎞
⎜
⎝

⎛
−

−
= 22

3

31

1
x

x

dx
dy  

 
 

2
2 91

3

x
x −

=  

2

2
2 9

3

x
xx −

=  

 
 

9

3
22

2

−
=

xx

x  
9

||3
22 −

=
xx

x   not  
2 2

3

9

x

x x −
 * 

 
 

9||

3
2 −

=
xx

. 

 
 
Substitute 32−=x : 
 
 

2
1

91232
3

=
−

=
dx
dy . 
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Question 9 

a. 

⎟
⎠

⎞
⎜
⎝

⎛
−=⎟

⎠

⎞
⎜
⎝

⎛
−=

3
sin

21
3

cosec21)(
x

xxf
π

π  

 
has vertical asymptotes when 
 

0
3

sin =⎟
⎠

⎞
⎜
⎝

⎛ xπ  

 

πnπx
=⇒

3
,  Zn∈  

 
nx 3=⇒ . 

 
The first two asymptotes for which 1>x  are 3=x  and 6=x . 
 
Therefore 3=a  and 6=b . Both values. [A1] 

Total 1 mark 
 
 
b. 
 
 
 
 
 
 
 
 

                                                ⎟
⎠

⎞
⎜
⎝

⎛
−1 ,

2
3                           ⎟

⎠

⎞
⎜
⎝

⎛ 3 ,
2
9  

 
 

                                    ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

3
41 ,1  

 
 
 
 
 
 
                                                                       3=x                        6=x  
 
 
●  Vertical asymptotes: 
 

3=x  and 6=x  (consequential on answer to part a.: ax =  and bx = ). [A1] 
 
 

●  Minimum turning point at ⎟
⎠

⎞
⎜
⎝

⎛ 3 ,
2
9  and maximum turning point at ⎟

⎠

⎞
⎜
⎝

⎛
−1 ,

2
3 . [A1] 

y

x

1 

1 

2 

2 

3 

3 

4 

4 

5 

5 

6 

6 

7 

7 

8 

8 

– 1 

– 1 

2 

2 

4 

4 

6 

6 

8 

8 

10 

10 

– 2 

– 2 

– 4 

– 4 

– 6 

– 6 

– 8 

– 8 

– 10 

– 10 
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Calculation: 

Method 1: 

Maximum turning point when 1
3

sin =⎟
⎠

⎞
⎜
⎝

⎛ xπ :  
2
3

=x  and 1−=y . 

 

Minimum turning point when 1
3

sin −=⎟
⎠

⎞
⎜
⎝

⎛ xπ :  
2
9

=x  and 3=y . 

 
Method 2: 

The turning points lie halfway between the vertical asymptotes. 
 
 

●  Endpoint:  1=x  and 
3
41−=y . Correct ‘ball park’ location. [A1] 

Comment:  1
2
41

3
41 −=−≈−  so the y-coordinate of the endpoint should be shown in the ‘ball park’ of 1−=y . 

 
 
●  Shape. [A1] 

Total 4 marks 


