The Mathematical Association of Victoria

Trial Exam 2014 SPECIALIST MATHEMATICS Written Examination 1

STUDENT NAME

Reading time: 15 minutes Writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of Book

Number of questions	Number of questions to be answered	Number of marks
9	9	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers,
- Students are NOT permitted to bring into the examination room: notes of any kind, a calculator of any type, blank sheets of paper and/or white out liquid/tape.

Materials supplied

• Question and answer book of 13 pages with a detachable sheet of miscellaneous formulas in the centrefold.

Instructions

- Detach the formula sheet from the centre of this book during reading time.
- Write your **name** in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

Instructions

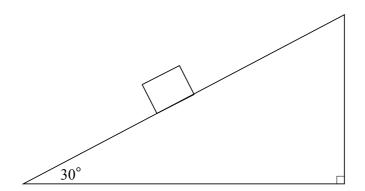
Answer **all** questions in the spaces provided.

Unless otherwise specified an **exact** answer is required to a question.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Take the acceleration due to gravity to have magnitude $g \text{ m/s}^2$, where g = 9.8

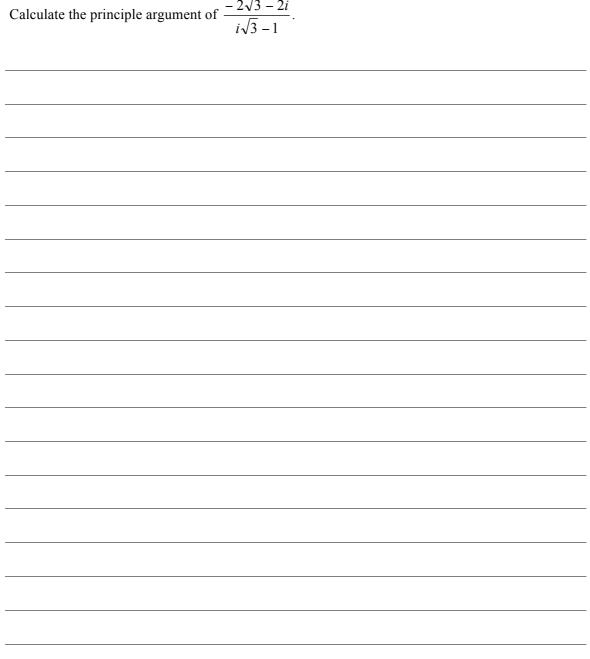

Question 1 (5 marks)

A body of mass 6 kg is projected at a speed of 3 m/s up a **rough** plane inclined at 30° to the horizontal.

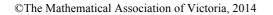
The coefficient of friction between the body and the plane is $\frac{2\sqrt{3}}{3}$.

a. On the diagram below, show all the forces acting on the body while it is moving up the plane and label them.

1 mark

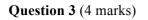


Find in terms of g the total distance travelled up the plane by the body.	4


Question 2 (6 marks)

a. Calculate the principle argument of
$$\frac{-2\sqrt{3}-2i}{i\sqrt{3}-1}$$
. 3 marks

©The Mathematical Association of Victoria, 2014



b. Let $p(z) = 4z^3 + az^2 + bz - 34$ where $a, b \in R$ and $z \in C$. If $p\left(-\frac{3}{2} + i\sqrt{2}\right) = 0$, find the values of a and b.

3 marks

Evaluate
$$\int_{\frac{1}{2}}^{1} \frac{x-1}{\sqrt{3-2x}} dx$$
 and express your answer in the form $\frac{\sqrt{a}-b}{c}$ where *a*, *b* and *c* are positive

integers.

Question 4 (6 marks)

A particle of mass 3 kg is acted on by a variable force so that its velocity v m/s when the particle is x m from the origin is given $v = 1 - x^2$.

a.	Find the force in newtons acting on the particle when $x = \frac{2}{3}$.	2 marks
b.	Find the time it takes for the particle to travel from the origin to $x = \frac{2}{3}$.	4 marks

Question 5 (4 marks)

For the curve defined by the relation

$$3(y+1)^2 - 2xy - x^2 = 7,$$

find the equation of all tangents to the curve that are parallel to the *x*-axis.


Question 6 (4 marks)

Consider the vectors

$$a = 2i - j - 2k$$
 and $b = -2i + tj - k$

where $t \in R$. Let θ be the angle between a and b.

Find the values of t such that $\sin(\theta) = \frac{4\sqrt{5}}{9}$.

Question 7 (3 marks)

The path of a particle is given by

$$\mathbf{r}(t) = t^2 \cos(t) \mathbf{i} - t \sin(t) \mathbf{j}, \ t \ge 0.$$

If the particle leaves the origin at t = 0, find the speed of the particle at time $t = \pi$.

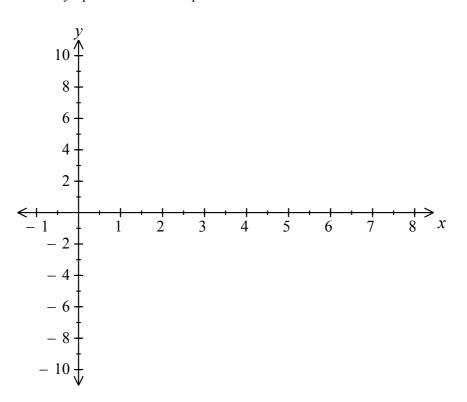
Question 8 (3 marks)

Find the equation of the normal to the curve $y = \cos^{-1}\left(\frac{3}{x}\right)$ at the point where $x = -2\sqrt{3}$.

Question 9 (5 marks)

Consider the function

$$f: [1,a) \cup (a,b) \rightarrow R, f(x) = 1 - 2\operatorname{cosec}\left(\frac{\pi x}{3}\right).$$


where the values of a and b are the largest for which f is defined.

a. State the values of *a* and *b*.

1 mark

b. Sketch the graph of y = f(x). Label the turning points and any endpoints with their **coordinates** and the asymptotes with their equations.

END OF QUESTION AND ANSWER BOOK