

NAME:

UNITS 3 & 4 Practice Examination

VCE® Specialist Mathematics

Written examination 2

QUESTION AND ANSWER BOOK Structure of book

Section	Number of questions	Number of questions to be answered	Number of marks
1	22	22	22
2	5	5	58
			80

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, a protractor, set-squares, aids for curve sketching, one bound reference, one approved CAS calculator or CAS software and, if desired, one scientific calculator. Calculator memory DOES NOT need to be cleared.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape.

Materials supplied

- Question and answer book of 28 pages.
- 4 page formula booklet.
- Answer sheet for multiple-choice questions.

Instructions

- Write your name in the space provided above on this page.
- Write your name on the multiple-choice answer sheet
- All written responses must be in English.

At the end of the examination

• Place the answer sheet for multiple-choice questions inside the front cover of this book.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

©2014

This page is blank

©2014

Ser2 SME2B

SECTION 1

Instructions for Section 1

Answer **all** questions in pencil on the answer sheet provided for multiple-choice questions. Choose the response that is **correct** for the question. A correct answer scores 1, an incorrect answer scores 0. Marks will **not** be deducted for incorrect answers. No marks will be given if more than one answer is completed for any question. Take the **acceleration due to gravity** to have magnitude $g m/s^2$, where g = 9.8.

Question 1

The **domain** of the function with the rule $f(x) = \arccos(2x)$ is

- **A.** [-1,1]
- **B.** [−2,2]
- $\mathbf{C.} \quad \left[-\frac{1}{2}, \frac{1}{2}\right]$
- **D.** [0, *π*]
- **E.** $\left[0,\frac{\pi}{2}\right]$

Question 2

The rule of the relation determined by parametric equations $x = 3 \cot(t) + 1$ and $y = 2 \csc(t) - 1$ is

A.	$\frac{(x+1)^2}{3}$ +	$\frac{(y-1)^2}{2} = 1$
B.	$\frac{(x+1)^2}{9}$ –	$-\frac{(y-1)^2}{4} = 1$
C.	$\frac{(x-1)^2}{9}$	$-\frac{(y+1)^2}{4} = 1$
D.	$\frac{(y+1)^2}{4} +$	$-\frac{(x-1)^2}{9} = 1$
E.	$\frac{(y+1)^2}{4} -$	$-\frac{(x-1)^2}{9} = 1$

©2014

Ser2 SME2B

The graph of $y = \frac{1}{ax^2+bx+c}$ has asymptotes at x = -2 and x = 4 and y = 0. Given that the graph has one stationary point with a y -coordinate of $-\frac{1}{18}$, it follows that

- A. a = 2, b = -4, c = -16
- **B.** a = 2, b = 4, c = -16
- C. a = 1, b = 2, c = -8
- **D.** a = 1, b = -2, c = -8
- **E.** a = 2, b = -12, c = 16

Question 4

- If $y = \cot\left(x \frac{\pi}{2}\right)$, which of the following statements is **not** true?
 - $A. \quad y = 1/\tan\left(x \frac{\pi}{2}\right)$
 - **B.** $y = \tan(\pi x)$
 - C. $y = \cot(x + \frac{\pi}{2})$
 - $\mathbf{D.} \quad y = 1/\tan\left(\frac{\pi}{2} x\right)$
 - **E.** $y = -\tan(x)$

©2014

Ser2 SME2B

The region of the complex plane inside the circle of radius *a* centred at the origin is given by the set of points *z*, where $z \in \mathbb{C}$, such that

 $A. \quad z\bar{z} < a$

- **B.** $z\bar{z} < a^2$
- C. $(\operatorname{Re}(z))^2 + (\operatorname{Im}(z))^2 < a$
- **D.** $|z| < a^2$
- **E.** $z\bar{z} > a$

Question 6

The $z = \operatorname{cis}\left(\frac{5\pi}{6}\right)$. The imaginary part of z + i is **A.** $\frac{i}{2}$ **B.** $\frac{1}{2}$ **C.** $\frac{\sqrt{3}}{2}$ **D.** $\frac{3}{2}$

E. $\frac{3i}{2}$

©2014

Ser2 SME2B

If
$$z = r \operatorname{cis}(\theta)$$
, then $\frac{(\bar{z})^2}{z}$ is equivalent to
A. $r^3 \operatorname{cis}(-3\theta)$
B. $r^3 \operatorname{cis}(\theta)$
C. $2\operatorname{cis}(-3\theta)$
D. $r^3 \operatorname{cis}(-\theta)$
E. $r \operatorname{cis}(-3\theta)$

Question 8

The principal arguments of the solution to the equation $z^2 = 1 - i$ are

A.
$$-\frac{\pi}{4}$$
 and $\frac{3\pi}{4}$
B. $-\frac{\pi}{8}$ and $\frac{7\pi}{8}$
C. $\frac{3\pi}{8}$ and $\frac{11\pi}{8}$
D. $-\frac{\pi}{8}$ and $-\frac{9\pi}{8}$
E. $-\frac{\pi}{4}$ and $-\frac{5\pi}{4}$

©2014

Ser2 SME2B

The definite integral $\int_{\pi/4}^{\pi/2} e^{-\cot(x)} (\cot^2(x) + 1) dx$ can be written in the form $\int_a^b \frac{1}{e^u} du$

A. $u = \cot(x), a = 1$ and b = 0

B.
$$u = \cot(x), a = 0 \text{ and } b = 1$$

C.
$$u = -\cot(x), a = 1$$
 and $b = 0$

- **D.** $u = -\cot(x), a = 0$ and b = 1
- **E.** $u = \tan(x), a = 1$ and $b = \infty$

Question 10

The region bounded by the lines x = 0, y = 2 and the graph of $y = x^{\frac{5}{3}}$, where $x \ge 0$ is rotated about the y-axis to form a solid of revolution. The volume of this solid is

A.
$$\frac{5\pi}{2^{7/5}}$$

B. $\frac{20}{11}2^{1/5}\pi$
C. $\frac{3\pi}{2^{1/3}}$
D. $\frac{10}{11}2^{8/25}\pi$

E.
$$\frac{12}{13} 2^{3/5} \pi$$

©2014

Ser2 SME2B

Euler's formula is used to find y_2 , where $\frac{dy}{dx} = \tan(x)$, $x_0 = 0$, $y_0 = 1$ and h = 0.1The value of y_2 correct to four decimal places is

- A. 1.0000 and this is an overestimate of y(0.2)
- **B.** 1.0100 and this is an underestimate of y(0.2)
- C. 1.0100 and this is an overestimate of y(0.2)
- **D.** 1.0303 and this is an underestimate of y(0.2)
- **E.** 1.0100 and this is an overestimate of y(0.2)

©2014

Which diagram best represents the direction field of the differential equation $\frac{dy}{dx} = x/y$?

©2014

Ser2 SME2B

Which of the following expressions is equivalent to $\ddot{x}dx$

A. vdv

B.
$$v \frac{dv}{dx}$$

C. $\frac{d}{dx} \left(\frac{1}{2}v^2\right)$

D. $v^2 dv$

E.
$$\frac{dv}{dt}$$

Question 14

Consider the four vectors $\mathbf{a} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$, $\mathbf{b} = 3\mathbf{i} + 2\mathbf{j} + \mathbf{k}$, $\mathbf{c} = 4\mathbf{i} + 4\mathbf{j} + 4\mathbf{k}$, $\mathbf{d} = 3\mathbf{i} + 3\mathbf{k}$.

Which one of the following is a linearly dependent set of vectors?

- A. {a, b}
- **B.** {**a**, **c**}
- C. {a, b, c}
- **D.** $\{b, c, d\}$
- **E.** $\{a, c, d\}$

©2014

Ser2 SME2B

Find the distance between point P(3,0,4) and point Q(0,-2,1).

A. 4

- **B.** 22
- **C.** $\sqrt{22}$
- **D.** 30
- **E.** $\sqrt{30}$

Question 16

Water containing 5 grams of salt per litre flows at a rate of 8 litres per minute into a tank that initially contained 100 litres of pure water. The concentration of salt in the tank is kept uniform by stirring and the mixture flows out of the tank at a rate of 10 litres per minute. If m grams is the amount of salt in the tank t minutes after the water begins to flow, the differential equation for m in terms of t is

A.
$$\frac{dm}{dt} = 5 - \frac{m}{100}$$

B.
$$\frac{dm}{dt} = 5 - \frac{m}{98}$$

C.
$$\frac{dm}{dt} = 5 - \frac{m}{100 - 2t}$$

D.
$$\frac{dm}{dt} = 40 - \frac{m}{100 + 2t}$$

E.
$$\frac{dm}{dt} = 40 - \frac{10m}{100 + 2t}$$

E.
$$\frac{dm}{dt} = 40 - \frac{10m}{100 - 2t}$$

©2014

Ser2 SME2B

Let $\mathbf{u} = 2\mathbf{i} + 3\mathbf{k}$, $\mathbf{v} = -3\mathbf{i} + 2\mathbf{k}$ and $\mathbf{w} = -2\mathbf{i} + 10\mathbf{k}$.

Which one of the following statements is not true?

- A. $\mathbf{u} \cdot \mathbf{v} = 0$
- **B.** $(\mathbf{u} + \mathbf{w}) \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{w}$
- C. $w \cdot w = |w|^2$
- **D.** $\mathbf{u} \cdot \mathbf{u} = \mathbf{v} \cdot \mathbf{v}$
- **E.** $(u + v) \cdot u = |u|$

Question 18

A box of mass *m* kg rests on the floor of a lift. Starting from rest, the lift moves downwards with a constant acceleration $a \text{ ms}^{-2}$, so that after time *t*, the box has traveled *x* m downward and is travelling with a downward velocity of $v \text{ ms}^{-1}$. Let F_N denote the normal reaction force of the lift floor on the box. Which of the following statements is **not** true?

- A. $ma = mg F_N$
- **B.** $mv^2 = 2x(mg F_N)$
- C. $m\frac{dv}{dt} = mg F_N$
- **D.** $mg = -ma + F_N$
- **E.** $x = \frac{1}{2}(g \frac{F_N}{m})t^2$

©2014

Ser2 SME2B

A ball of mass *m* is projected vertically with an upwards velocity v(x) m/s, where *x* is the distance measured upwards from ground level in metres at time *t* seconds. The motion of the ball is retarded by an air resistance of magnitude kv^2 newtons. The equation of motion of the ball is

$$\mathbf{A.} \quad m\frac{dv}{dt} = m\mathbf{g} + kv^2$$

$$\mathbf{B.} \quad m\frac{d^2x}{dt^2} = -m\mathbf{g} + kv^2$$

$$\mathbf{C.} \quad \frac{dv^2}{dx} = 2\mathbf{g} - 2\frac{kv^2}{m}$$

$$\mathbf{D.} \quad \frac{d(v^2/2)}{dx} = m\mathbf{g} + kv^2$$

E.
$$mv \frac{dv}{dx} = -mg - kv^2$$

©2014

Forces of magnitude 5 N, 6 N and W N act on a particle that is in equilibrium, as shown in the diagram below.

The magnitude of W, in newtons, can be found by evaluating

- A. $\sqrt{5^2 + 6^2 2 \times 5 \times 6 \cos(80^\circ)}$
- **B.** $5^2 + 6^2 2 \times 5 \times 6 \cos(80^\circ)$
- C. $5^2 + 6^2 2 \times 5 \times 6 \cos(100^\circ)$
- **D.** $\sqrt{5^2 + 6^2 2 \times 5 \times 6 \cos(100^\circ)}$
- $\mathbf{E.} \quad \sin(80^\circ) \times \frac{6}{\sin(140^\circ)}$

©2014

Ser2 SME2B

An ice hockey puck of mass $\frac{1}{5}$ kg, slides across a perfectly level, perfectly smooth ice rink with an initial speed of 10 ms⁻¹. A constant frictional force acts on the hockey puck, so that after travelling 9 m, the puck is travelling at 8 ms⁻¹. The magnitude of the frictional force, in newtons, is

A.
$$\frac{2}{45}$$

B. $\frac{2}{9}$
C. $\frac{2}{5}$
D. 2
E. 10

Question 22

The velocity $v \text{ ms}^{-1}$ of a body which is moving in a straight line, when it is x m from the origin, is given by $v = \arctan(x)$. The acceleration of the body in ms⁻² is given by

A. $\sec^2(x)$

B.
$$\frac{\arctan(x)}{x^2+1}$$

C. $\tan(x)\sec^2(x)$

D.
$$\frac{1}{x^2 + 1}$$

E.
$$\frac{1}{2} \left(\frac{2 \arcsin(x)^2}{\sqrt{1 - x^2} \arccos(x)^3} + \frac{2 \arcsin(x)}{\sqrt{1 - x^2} \arccos(x)^2} \right)$$

©2014

Ser2 SME2B

SECTION 2

Instructions for Section 2

Answer **all** questions in the spaces provided. Unless otherwise specified an **exact** answer is required to a question. In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale. Take the **acceleration due to gravity** to have magnitude $g m/s^2$, where g = 9.8.

Question 1 (11 marks)

A curve is defined by parametric equations

$$x = 2 \sec(t) + 1$$
$$y = 3 \tan(t) - 2$$

for $t \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

a. Find the Cartesian equation of the curve.

2 marks

b. Find the values of *t* for which the gradient of the curve is 3.

2 marks

©2014

Ser2 SME2B

Consider the **different** relation $\frac{x^2}{9} + \frac{(y-2)^2}{4} = 1$.

c. Find the value(s) of *y* if the tangent line is vertical

2 marks

d. Sketch the graph of $\frac{x^2}{9} + \frac{(y-2)^2}{4} = 1$, showing the coordinates of any relevant vertices.

©2014

Ser2 SME2B

The region in the first quadrant enclosed by the graph of $\frac{x^2}{9} + \frac{(y-2)^2}{4} = 1$, the *y* -axis, and the lines y = 1 and y = 3 is rotated about the *y* -axis to form a solid of revolution. Consider a **different** relation $\frac{x^2}{9} + \frac{(y-2)^2}{4} = 1$.

e. i. Write down a definite integral, in terms of y, that gives the volume of this solid of revolution.

2 marks

ii. Find the volume of this solid of revolution.

1 mark

Question 2 (12 marks)

a. On the Argand diagram below, sketch $\{z: |z| = 3, z \in \mathbb{C}\}$ and sketch $\{z: |z + \sqrt{3} - i| = |z - \sqrt{3} + i|, z \in \mathbb{C}\}.$ 3 marks Im(z)Re(z)

©2014

Ser2 SME2B

b. Find all the elements of $\{z: |z| = 3, z \in \mathbb{C}\} \cap \{z: |z + \sqrt{3} - i| = |z - \sqrt{3} + i|, z \in \mathbb{C}\}$, expressing your answer(s) in the form a + ib. 2 marks

One of the roots of $z^3 + 27 = 0$ is $z = \frac{3}{2} + i \frac{3\sqrt{3}}{2}$

c. Write down the other roots in cartesian form.

d.	Plot and label all these roots on the Argand diagram provided in part a.	1 mark
e.	Express $z^3 + 27$ as a product of linear factors in terms of z.	1 mark

f.	On the diagram provided in part a. , shade the region defined by	
	$\{z: z \le 3, z \in \mathbb{C}\} \cap \{z: \operatorname{Arg}(z) > \frac{\pi}{3}, z \in \mathbb{C}\}$	1 mark
g.	Find the area of the region shaded in part e.	2 marks

©2014

Ser2 SME2B

2 marks

Question 3 (11 marks)

The number of individuals *n* (measured in thousands) in a large city that have been infected by a flu virus, *t* months since the beginning of the year is modelled by $\log_e(n) = 5 - 4e^{-6t/5}$, $t \ge 0$.

a. Verify that $\log_e(n) = 5 - 4e^{-6t/5}$ satisfies the differential equation

$$\frac{\frac{1}{n}\frac{dn}{dt} = \frac{6}{5}(5 - \log_{e}(n))$$
2 marks

b. Find the initial number of infected individuals in the city. Express your answer correct to the nearest individual. 1 mark

Find the limiting number of individuals that would eventually become infected with the flu virus.
 Express your answer correct to the nearest individual.
 2 marks

©2014

Ser2 SME2B

2 marks

d. i. Show that
$$\frac{d^2n}{dt^2} = \frac{36}{25} n(4 - \log_e(n))(5 - \log_e(n)).$$

ii. The graph of n as a function t has a point of inflection. Find the exact coordinates of this point. 2 marks

e. Plot the graph of *n* as a function of *t* on the axes below for $0 \le t \le 6$ showing any relevant axis intercepts, points of inflexion and/or asymptotes. 2 marks

Ser2 SME2B

Published by QATs. Permission for copying in purchasing school only.

©2014

Question 4 (12 marks)

Let a = i + 2j + 2k and m = 18i + 18j + 0k.

a. Resolve a into two vector components, one is parallel to m and one is perpendicular to m. 2 marks

b. Find the acute angle θ between vectors **a** and **m**.

2 marks

Published by QATs. Permission for copying in purchasing school only.

©2014

Ser2 SME2B

c. Find the value of real number β such that $\mathbf{b} = 4\mathbf{i} + \beta\mathbf{j} - 4\mathbf{k}$ makes an angle $\frac{\pi}{4}$ with vector \mathbf{m} where $\mathbf{b} \neq \mathbf{a}$.

d. Find α if $\mathbf{m} = 6\mathbf{a} + \alpha \mathbf{b}$.

2 marks

©2014

Published by QATs. Permission for copying in purchasing school only.

Ser2 SME2B

Consider three new vectors \mathbf{p} , \mathbf{r} and $\mathbf{q} = |\mathbf{r}|\mathbf{p} + |\mathbf{p}|\mathbf{r}$.

e. Using properties of the dot product, show that the cosine of the angle between vectors **p** and **q** is $\frac{|\mathbf{r}||\mathbf{p}|+\mathbf{r}\cdot\mathbf{p}}{|\mathbf{q}|}$ 2 marks

f. Hence, show that vector $\mathbf{q} = |\mathbf{r}|\mathbf{p} + |\mathbf{p}|\mathbf{r}$ is the **angle bisector** of vectors \mathbf{p} and \mathbf{r} . (Hint: Find the cosine of the angle between vectors \mathbf{r} and \mathbf{q}).

2 marks

cosine of the angle between vectors \mathbf{r} and \mathbf{q}). 2 m

©2014

Ser2 SME2B

Question 5 (12 marks)

Two blocks of stone of mass m kg and M = 8m kg are connected by a light, strong, inextensible rope. The rope passes over a smooth pulley at the top of a rough ramp elevated at 30° to the horizontal. The smaller mass m is x metres from the pulley, and the heavier mass M, is initially held in place with its bottom y metres above the ground, as shown in the figure below. You may assume that x > y.

The coefficient of friction between the ramp and the smaller block is $\frac{1}{\sqrt{3}}$. At time t = 0 seconds, the heavier block is released, and the system begins to move.

a. Find a pair of equations for the initial acceleration $a \text{ ms}^{-2}$ and rope tension τ newton, over the time interval before *M* reaches ground level. 3 marks

©2014

Ser2 SME2B

b. Hence, find the acceleration *a* up the plane (leave answer in terms of g if necessary). 1 mark

c. Find the speed $V \text{ ms}^{-1}$ of the heavier block *M*, just before it hits the ground (Express your answer in terms of *y*). 2 marks

d. Find the speed $v \text{ ms}^{-1}$ of the lighter block *m*, just before it reaches the pulley at the top of the ramp. 4 marks

©2014

Ser2 SME2B

e. If block *m* comes to rest instantaneously as it reaches the pulley, show that $x = \frac{16}{9}y$ 2 marks

End of Examination

©2014

Ser2 SME2B

SPECIALIST MATHEMATICS

Written examinations 1 and 2

FORMULA SHEET

Directions to students

Detach this formula sheet during reading time.

This formula sheet is provided for your reference.

©2014

Ser2 SME2B

Specialist Mathematics Formulas

Mensuration

area of a trapezium:	$\frac{1}{2}(a+b)h$
curved surface area of a cylinder:	$2\pi rh$
volume of a cylinder:	$\pi r^2 h$
volume of a cone:	$\frac{1}{3}\pi r^2 h$
volume of a pyramid:	$\frac{1}{3}Ah$
volume of a sphere:	$\frac{4}{3}\pi r^3$
area of a triangle:	$\frac{1}{2}bc\sin A$
sine rule:	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
cosine rule:	$c^2 = a^2 + b^2 - 2 ab \sin C$

Coordinate geometry

ellipse:
$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$
 hyperbola: $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$

Circular (trigonometric) functions

$$cos2(x) + sin2(x) = 1$$

$$sin(2x) = 2 sin(x) cos(x)$$

$$1 + tan2(x) = sec2(x)$$

$$cot2(x) + 1 = cosec2(x)$$

$$sin(x + y) = sin(x) cos(y) + cos(x) sin(y)$$

$$sin(x - y) = sin(x) cos(y) - cos(x) sin(y)$$

$$cos(x + y) = cos(x) cos(y) - sin(x) sin(y)$$

$$cos(x - y) = cos(x) cos(y) + sin(x) sin(y)$$

$$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)} \qquad \qquad \tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$$

©2014

Ser2 SME2B

Published by QATs. Permission for copying in purchasing school only.

30

$$cos(2x) = cos2(x) - sin2(x) = 2 cos2(x) - 1 = 1 - 2 sin2(x) tan(2x) = \frac{2tan(x)}{1 - tan2(x)}$$

function	sin ⁻¹	cos ⁻¹	tan ⁻¹
domain	[-1,1]	[-1,1]	R
range	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	[0, <i>π</i>]	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

Algebra (complex numbers)

$$z = x + iy = r(\cos \theta + i \sin \theta) = r \operatorname{cis} \theta$$

$$|z| = \sqrt{x^2 + y^2} = r \qquad \qquad -\pi < \operatorname{Arg}(z) \le \pi$$

$$z_1 z_2 = r_1 r_2 \operatorname{cis} (\theta_1 + \theta_2) \qquad \qquad \qquad \frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis} (\theta_1 - \theta_2)$$

 $z^n = r^n \operatorname{cis}(n\theta)$ (de Moivre's theorem)

Calculus

$$\frac{d}{dx}(x^{n}) = nx^{n-1}$$

$$\int x^{n} dx = \frac{1}{n+1}x^{n+1} + c, n \neq -1$$

$$\int \frac{d}{dx}(e^{ax}) = ae^{ax}$$

$$\int e^{ax} dx = \frac{1}{a}e^{ax} + c$$

$$\int \frac{1}{x} dx = \log_{e}|x| + c$$

$$\int \frac{d}{dx}(\sin(ax)) = a\cos(ax)$$

$$\int \sin(ax) dx = \frac{1}{a}\cos(ax) + c$$

$$\int dx(\cos(ax)) = -a\sin(ax)$$

$$\int \cos(ax) dx = -\frac{1}{a}\sin(ax) + c$$

$$\int dx(\tan(ax)) = a\sec^{2}(ax)$$

$$\int \sec^{2}(ax) dx = \frac{1}{a}\tan(ax) + c$$

$$\int \frac{d}{dx}(\sin^{-1}(x)) = \frac{1}{\sqrt{1-x^{2}}}$$

$$\int \frac{1}{\sqrt{a^{2}-x^{2}}} dx = \sin^{-1}(ax) + c, a > 0$$

©2014

Ser2 SME2B

$$\frac{d}{dx}(\cos^{-1}(x)) = \frac{-1}{\sqrt{1-x^2}} \qquad \qquad \int \frac{-1}{\sqrt{a^2-x^2}} dx = \cos^{-1}(ax) + c, a > 0$$

$$\frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{1+x^2} \qquad \qquad \int \frac{a}{a^2+x^2} dx = \sin^{-1}(ax) + c$$
product rule:
$$\frac{d}{dx}(uv) = u \frac{d}{dx}(v) + v \frac{d}{dx}(u)$$

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{d}{dx}(u) - u \frac{d}{dx}(v)}{v^2}$$
chain rule:
$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$

 $\frac{dy}{dx} = f(x), x_0 = a \text{ and } y_0 = b$ $\Rightarrow x_{n+1} = x_n + h, \ y_{n+1} = y_n + hf(x_n)$ Euler's method:

a a a la vati a v	~ _	d^2x	dv	dv	d ((1_{12})	
acceleration:	<i>a</i> =	$\overline{dx^2} \equiv$	$\frac{dt}{dt} = t$	$\frac{dx}{dx} =$	\overline{dx}	$(\overline{2}^{v^{-}})$	

constant (uniform) acceleration: v = u + at, $s = ut + \frac{1}{2}at^2$, $v^2 = u^2 + 2as$, $s = \frac{1}{2}(u + v)t$

Vectors in two and three dimensions

 $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$

$$|\mathbf{r}| = \sqrt{x^2 + y^2 + z^2} = r$$

$$\mathbf{r}_1 \cdot \mathbf{r}_2 = r_1 r_2 \cos(\theta) = x_1 x_2 + y_1 y_2 + z_1 z_2$$

$$\dot{\mathbf{r}} = \frac{d\mathbf{r}}{dt} = \frac{dx}{dt} \mathbf{i} + \frac{dy}{dt} \mathbf{j} + \frac{dz}{dt} \mathbf{k}$$
Mechanics
momentum:
$$\mathbf{p} = m\mathbf{v}$$
equation of motion:
$$\mathbf{R} = m\mathbf{a}$$
friction:
$$F \le \mu N$$

©2014

Published by QATs. Permission for copying in purchasing school only.

32

Ser2 SME2B

Multiple Choice Answer Sheet

Student Name:

Shade the letter that corresponds to each correct answer.

Question	A	1		3	(Ι)	K)
Question 1	()	()	()	()	()
Question 2	()	()	()	()	()
Question 3	()	()	()	()	()
Question 4	()	()	()	()	()
Question 5	()	()	()	()	()
Question 6	()	()	()	()	()
Question 7	()	()	()	()	()
Question 8	()	()	()	()	()
Question 9	()	()	()	()	()
Question 10	()	()	()	()	()
Question 11	()	()	()	()	()
Question 12	()	()	()	()	()
Question 13	()	()	()	()	()
Question 14	()	()	()	()	()
Question 15	()	()	()	()	()
Question 16	()	()	()	()	()
Question 17	()	()	()	()	()
Question 18	()	()	()	()	()
Question 19	()	()	()	()	()
Question 20	()	()	()	()	()
Question 21	()	()	()	()	()
Question 22	()	()	()	()	()

©2014

Ser2 SME2B

Solution Pathway

Below are sample answers. Please consider the merit of alternative responses.

Specialist Mathematics Exam 2: SOLUTIONS

Section 1: Multiple-choice Answers

1. C	2. E	3. A	4. D	5. B
6. D	7. E	8. B	9. B	10. B
11. B	12. A	13. A	14. C	15. C
16. E	17. E	18. D	19. E	20. D
21. C	22. B			

Section 1: Multiple-choice Solutions

Question 1

Domain
$$\arccos = [-1,1] \Rightarrow -1 \le 2x \le 1 \Rightarrow x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$$
 Answer: C

Question 2

$$\operatorname{cosec}^{2}(t) - \operatorname{cot}^{2}(t) = 1 \Rightarrow \frac{(y+1)^{2}}{4} - \frac{(x-1)^{2}}{9} = 1$$
 Answer: E

Question 3

The denominator $ax^2 + bx + c$ has intercepts at x = -2 and x = 4 and a t.p. of -18 at x = 1

 $\Rightarrow a(x+2)(x-4)|_{x=1} = -18 \Rightarrow a = 2$

Finally, expanding gives $ax^2 + bx + c = 2x^2 - 4x - 16 \Rightarrow a = 2, b = -4$ and c = -16 Answer: A

Question 4

$$\frac{1}{\tan\left(\frac{\pi}{2}-x\right)} = \frac{1}{\cot(x)} \neq \cot(x)$$
 Answer: D

©2014

Published by QATs. Permission for copying in purchasing school only.

Ser2 SME2B

A region of the complex plane inside the circle of radius a centred at the origin is

 $|z| < a \Rightarrow \sqrt{z\overline{z}} < a \Rightarrow z\overline{z} < a^2$ Answer: B

Question 6

$$\operatorname{Im}\left(\operatorname{cis}\left(\frac{5\pi}{6}\right)+i\right) = \operatorname{Im}\left(\operatorname{cos}\left(\frac{5\pi}{6}\right)+i\left(\operatorname{sin}\left(\frac{5\pi}{6}\right)+1\right)\right) = \frac{3}{2} \text{ Answer: D}$$

Question 7

$$\frac{(\bar{z})^2}{z} = \frac{(\bar{r}\operatorname{cis}(\theta))^2}{r\operatorname{cis}(\theta)} = \frac{(r\operatorname{cis}(-\theta))^2}{r\operatorname{cis}(\theta)} = \frac{r^2\operatorname{cis}(-2\theta)}{r\operatorname{cis}(\theta)} = r\operatorname{cis}(-3\theta)$$
 Answer: E

Question 8

$$z^{2} = 1 - i \Rightarrow r^{2} \operatorname{cis}(2\theta) = \sqrt{2} \operatorname{cis}\left(-\frac{\pi}{4} + 2k\pi\right), k = 0, 1 \text{ Solving for } \theta$$
$$\theta = \frac{1}{2}\left(-\frac{\pi}{4} + 2k\pi\right), k = 0, 1 \Rightarrow \theta \in \left\{-\frac{\pi}{8}, \frac{7\pi}{8}\right\} \text{ Answer: B}$$

Question 9

$$e^{-\cot(x)} = \frac{1}{e^{\cot(x)}} \Rightarrow u = \cot(x), \frac{du}{dx} = -\csc^{2}(x) = -(\cot^{2}(x) + 1)$$

when $x = \frac{\pi}{4}, u = 1$ and when $x = \frac{\pi}{2}, u = 0$
 $\therefore \int_{\pi/4}^{\pi/2} e^{-\cot(x)} (\cot^{2}(x) + 1) dx = -\int_{1}^{0} \frac{1}{e^{u}} du = \int_{0}^{1} \frac{1}{e^{u}} du$ Answer: B

Question 10

$$y = x^{\frac{5}{3}} \Rightarrow x = y^{\frac{3}{5}}$$
$$V = \pi \int_0^2 x^2(y) \, dy = \pi \int_0^2 y^{\frac{6}{5}} \, dy = \pi \frac{20}{11} 2^{1/5} \text{ Answer: B}$$

Question 11

©2014

Published by QATs. Permission for copying in purchasing school only.

Ser2 SME2B

35

Exact value
$$y(0.2) = 1 + \int_0^{0.2} \tan(x) \, dx = 1 - \log_e(\cos(0.2)) \approx 1.020$$

Euler's estimate $y(0.2) = 1 + 0.1 \tan(0) + 0.1 \tan(0.1) \approx 1.0100$ Answer: B

Question 12

If f(x, y) = x/y then f(-x, y) = -f(x, y) and $f(x, -y) = -f(x, y) \Rightarrow$ Answer: A

Question 13

$$\ddot{x}dx = \frac{dv}{dt}\frac{dx}{dt}dt = \frac{dx}{dt}\frac{dv}{dt}dt = vdv$$
 Answer: A

Question 14

By inspection $\mathbf{a} + \mathbf{b} = \mathbf{c} \Rightarrow \mathbf{Answer: C}$

Question 15

If (3,0,4), Q(0, -2, 1) then $\overrightarrow{PQ} = -3\mathbf{i} - 2\mathbf{j} - 3\mathbf{k} \Rightarrow |PQ| = \sqrt{22}$ Answer: C

Question 16

$$\frac{dm}{dt} = 5 \times 8 - \frac{m}{100 + (8 - 10) \times t}$$
 Answer: E

Question 17

Clearly, $\mathbf{u} \cdot \mathbf{v} = 0 \Rightarrow (\mathbf{u} + \mathbf{v}) \cdot \mathbf{u} = \mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|^2$ Answer: E

Question 18

Weight is in same direction as acceleration, and normal reaction force is in the opposite direction to acceleration. **Answer: D**

Question 19

Up is positive, weight and air resistance are down, so they are negative in Newton's Law.

$$\Rightarrow ma = -mg - kv^2, but \ a = v \frac{dv}{dx} \Rightarrow \text{Answer: E}$$

©2014

Ser2 SME2B

Application of the cosine rule to the triangle above gives

 $W = \sqrt{5^2 + 6^2 - 2 \times 5 \times 6 \cos(100^\circ)}$ Answer: D

Question 21

$$a = \frac{v^2 - u^2}{2 \times s} = \frac{8^2 - 10^2}{18} = -2 \text{ms}^{-2}$$

magnitude of the frictional force $= m|a| = \frac{2}{5}$ Answer: C

Question 22

acceleration = $v \frac{dv}{dx} = \frac{\arctan(x)}{x^2 + 1}$ Answer: B

©2014

Ser2 SME2B

Section 2: Extended Answer Solutions

Question 1 (11 marks)

a. (2 marks)

$$\sec(t) = \frac{x-1}{2}$$
 and $\tan(t) = \frac{y+2}{3}$ (M1)

$$\sec^2(t) - \tan^2(t) = 1 \Rightarrow \frac{(x-1)^2}{4} - \frac{(y+2)^2}{9} = 1$$
 (A1)

b. (2 marks)

$$\frac{dy}{dx} = \frac{\dot{y}}{\dot{x}} = \frac{3}{2\sin\left(t\right)} \tag{M1}$$

$$\frac{dy}{dx} = \frac{3}{2\sin(t)} = 3 \Rightarrow t = \frac{\pi}{6}$$
(A1)

c. (2 marks)

$$\frac{dy}{dx} = \frac{4x}{9(y-2)} \tag{A1}$$

$$\frac{dy}{dx} = \infty \Rightarrow y = 2 \tag{A1}$$

d.

Shape(A1)Correct Vertices(A1)e. i. (2 marks)Ser2 SME2B©2014Ser2 SME2B

Published by QATs. Permission for copying in purchasing school only.

38

Integrand(A1)

$$V = \pi \int_{1}^{3} 9(1 - (y - 2)^{2}/4) \, dy$$

ii. (1 mark)

$$\frac{33\pi}{2}$$
 (A1)

a. (3 marks)

Circle – correct centre and radius

(A1)

Shape(A1)

Slope (A1)

Straight Line

b. (2 marks)

$$\frac{3}{2} + i\frac{3\sqrt{3}}{2}$$
 and $-\frac{3}{2} - i\frac{3\sqrt{3}}{2}$ (A2)

©2014

$$-3 \text{ and } \frac{3}{2} - i\frac{3\sqrt{3}}{2} \tag{A2}$$

Published by QATs. Permission for copying in purchasing school only.

39

Ser2 SME2B

(A1)

(A1)

d. (1 mark)

Totally correct

e. (1 mark)

$$(z+3)\left(z-\frac{3}{2}-i\frac{3\sqrt{3}}{2}\right)\left(z-\frac{3}{2}+i\frac{3\sqrt{3}}{2}\right)$$
(A1)

f. (1 mark) Totally correct
h. (2 marks)

Area =
$$\frac{\left(\frac{2\pi}{3}\right)}{2\pi} \times \pi \times 3^2$$
 (M1)

Area =
$$3\pi$$
 square units (A1)

Question 3 (11 marks)

a. (2 marks)

Differentiating both sides with respect to time and using the chain rule

$$\frac{d}{dt}\log_{e}(n) = \frac{d}{dt} \left(5 - 4e^{-6t/5} \right) \Rightarrow \frac{1}{n} \frac{dn}{dt} = \frac{24}{5} e^{-6t/5}$$
(M1)

but
$$\frac{24}{5}e^{-6t/5} = \frac{6}{5}(5 - \log_e(n)) \Rightarrow \frac{1}{n}\frac{dn}{dt} = \frac{6}{5}(5 - \log_e(n))$$
 (M1)

b. (1 mark)

$$t = 0 \Rightarrow \log_{e}(n(0)) = 5 - 4e^{-6 \times 0/5} \Rightarrow n(0) = e \Rightarrow 1000 \times e \approx 2718 \text{ individuals}$$
(A1)
c. (2 marks)

$$\lim_{t \to \infty} \log_{e}(n) = \lim_{t \to \infty} (5 - 4e^{-6t/5}) = 5$$
(M1)

Number of individuals eventually infected $1000 \times e^5 \approx 148413$ (A1)

d. i. (2 marks)

Differentiating both sides of $\frac{dn}{dt} = \frac{6}{5}n(5 - \log_e(n))$ with respect to t and using the chain rule gives $\frac{d^2n}{dt} = \frac{d}{5}e^6(5 - \log_e(n)) \frac{dn}{dt} = \frac{6}{5}n(5 - \log_e(n))$

$$\frac{d^2n}{dt^2} = \frac{d}{dn} \left(\frac{6}{5}n(5 - \log_e(n))\right) \frac{dn}{dt} = \frac{6}{5}(4 - \log_e(n))\frac{dn}{dt}$$
(M1)

Substituting
$$\frac{dn}{dt} = \frac{6}{5}n(5 - \log_e(n))$$
 in the preceding equation gives the required result (M1)
ii. (2 marks)

At a point of inflection, $\frac{d^2n}{dt^2} = \frac{6}{5}n(4 - \log_e(n))(5 - \log_e(n))$ changes sign $0 < n < e^4 < n < e^5$

$$\frac{6}{5}n \qquad (4 - \log_{e}(n)) \qquad (5 - \log_{e}(n))$$

$$\frac{d^2 n}{dt^2} = 0 \quad \frac{d^2 n}{dt^2} > 0 \qquad \frac{d^2 n}{dt^2} = 0 \qquad \frac{d^2 n}{dt^2} < 0 \qquad \frac{d^2 n}{dt^2} = 0$$

Or using a sign diagram shows that $\frac{d^2n}{dt^2}$ changes sign at $n = e^4$ (M1) Solving $\log_e(n) = 5 - 4e^{-6t/5}$ for t when $n = e^4$ gives $t = \frac{5}{3}\log_e(2)$

©2014

Ser2 SME2B

$$\therefore (t,n) = \left(\frac{5}{3}\log_{e}(2), e^{4}\right) \tag{A1}$$

e. (2 marks)

Question 4 (12 marks)

a. (2 marks)

Vector component parallel to \mathbf{m} is $\frac{3}{2}\mathbf{i} + \frac{3}{2}\mathbf{j}$ (A1) Vector component perpendicular to \mathbf{m} is $-\frac{1}{2}\mathbf{i} + \frac{1}{2}\mathbf{j} + 2\mathbf{k}$ (A1)

b. (2 marks)

$$\theta = \arccos(\frac{\mathbf{a} \cdot \mathbf{m}}{\sqrt{\mathbf{a} \cdot \mathbf{a}} \sqrt{\mathbf{m} \cdot \mathbf{m}}}) \tag{M1}$$

$$\theta = \frac{\pi}{4} \tag{A1}$$

c. (2 marks)

$$\frac{\mathbf{b} \cdot \mathbf{m}}{\sqrt{\mathbf{a} \cdot \mathbf{a}} \sqrt{\mathbf{m} \cdot \mathbf{m}}} = \frac{4+\beta}{\sqrt{2}\sqrt{32+\beta^2}} = \cos(\frac{\pi}{4})$$

Solving for
$$\beta$$
 gives $\beta = 2$ (A1)

d. (2 marks)

 $18\mathbf{i} + 18\mathbf{j} + 0\mathbf{k} = 6(\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) + \alpha(4\mathbf{i} + 2\mathbf{j} - 4\mathbf{k})$ (M1) Equating components on both sides gives $\alpha = 3$.

e. (2 marks) cosine of the angle between vectors **p** and **q** is

©2014 Ser2 SME2B

Published by QATs. Permission for copying in purchasing school only.

41

(M1)

$\mathbf{p} \cdot (\mathbf{r} \mathbf{p} + \mathbf{p} \mathbf{r})$		(M 1)
p (r p+ p r)		(111)
$(\mathbf{r} \mathbf{p}\cdot\mathbf{p}+ \mathbf{p} \mathbf{p}\cdot\mathbf{r})$	$(\mathbf{r} \mathbf{p} +\mathbf{p}\cdot\mathbf{r})$	(4 1)

$$=\frac{(|\mathbf{r}||\mathbf{p}\cdot\mathbf{p}+|\mathbf{p}||\mathbf{p}\cdot\mathbf{r})}{|\mathbf{p}||(|\mathbf{r}||\mathbf{p}+|\mathbf{p}|\mathbf{r})|} = \frac{(|\mathbf{r}||\mathbf{p}|+|\mathbf{p}\cdot\mathbf{r})}{|(|\mathbf{r}||\mathbf{p}+|\mathbf{p}|\mathbf{r})|}$$
(A1)

f. (2 marks)

cosine of the angle between vectors \mathbf{r} and \mathbf{q} is $\frac{\mathbf{r} \cdot (|\mathbf{r}|\mathbf{p} + |\mathbf{p}|\mathbf{r})}{|\mathbf{r}||(|\mathbf{r}|\mathbf{p} + |\mathbf{p}|\mathbf{r})|} = \frac{(|\mathbf{r}|\mathbf{r} \cdot \mathbf{p} + |\mathbf{p}|\mathbf{r} \cdot \mathbf{r})}{|\mathbf{r}||(|\mathbf{r}|\mathbf{p} + |\mathbf{p}|\mathbf{r})|} = \frac{(|\mathbf{r}||\mathbf{p}| + \mathbf{p} \cdot \mathbf{r})}{|(|\mathbf{r}|\mathbf{p} + |\mathbf{p}|\mathbf{r})|}$ (M1) cosine of the angle between vectors \mathbf{p} and \mathbf{q} = cosine of the angle between vectors \mathbf{r} and \mathbf{q} \therefore **q** bisects the angle between vectors **p** and **r** (A1)

Question 5 (12 marks)

a. (3 marks)

Applying Newtons 2^{nd} Law to the smaller mass, taking positive in the direction up the plane gives $\tau - mg\sin(30^\circ) - \frac{mg}{\sqrt{3}}\cos(30^\circ) = m a$ (M1) Simplifying (1) $\tau - mg = m a$ (M1) Applying Newtons 2nd Law to the heavier mass, taking positive in the downward direction gives (A1)

- $8mg \tau = 8ma$ (2)
- **b.** (1 mark)

Solving equations (1) and (2) gives

$$a = \frac{7}{9} \text{g ms}^{-2}$$

c. (2 marks)

Attempt to use the constant acceleration formula $V^2 = u^2 + 2 a y$ (M1)

$$u = 0, a = \frac{7}{9}g \Rightarrow V = \frac{\sqrt{14gy}}{3} \text{ ms}^{-1} \text{ downwards}$$
 (A1)

d. Find the speed $v \text{ ms}^{-1}$ of the lighter block *m*, just before it reaches the pulley at the top of the ramp (4 marks)

From equation (1), a = -g after the heavier block reaches ground level (A1) Attempt to use the constant acceleration formula $v^2 = V^2 + 2a(x - y)$ (M1)

Attempt to substitute
$$a = -g$$
 and $V = \frac{\sqrt{14gy}}{3}$ in preceding equation (M1)

Simplifying

$$v = \sqrt{\frac{14gy}{9} - 2g(x - y)}$$
(A1)

e. (2 marks)

©2014

If block comes to rest at top of ramp, v = 0 in preceding equation (M1) Solving

$$\frac{^{14gy}}{^{9}} - 2g(x - y) = 0 \Rightarrow x = \frac{^{16y}}{^{9}}$$
(M1)

Ser2 SME2B

(A1)

Published by QATs. Permission for copying in purchasing school only.

42