Cre '2016 Trial	SSSA eating VCE Succ Examina Examina	cess ation Pao tion 4 of	ckage' - f 5		THIS BOX IS FOR I	LLUSTRATIVE PUR	POSES ONLY	
	STUDENT	NUMBE	R					Letter
Figures								
Words								

SPECIALIST MATHEMATICS

Units 3 & 4 – Written examination 2

(TSSM's 2014 trial exam updated for the current study design)

Reading time: 15 minutes Writing time: 2 hours

QUESTION AND ANSWER BOOK

Structure of book						
Section Number of		Number of questions	Number of marks			
	questions	to be answered				
1	22	22	22			
2	5	5	58			
			Total 80			

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, a protractor, set-squares, aids for curve sketching, one bound reference, one approved graphics calculator or approved CAS calculator and a scientific calculator.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape.

Materials supplied

• Question and answer book of 23 pages.(including a multiple choice answer sheet)

Instructions

- Print your name in the space provided on the top of this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other electronic devices into the examination room.

SECTION 1

Instructions for Section 1

Answer **all** questions on the answer sheet provided for multiple-choice questions. Choose the response that is **correct** for the question. A correct answer scores 1, an incorrect answer scores 0. Marks are **not** deducted for incorrect answers. If more than 1 answer is completed for any question, no mark will be given.

Take the **acceleration due to gravity**, to have magnitude $g m/s^2$, where g = 9.8.

Question 1

The graph of $y = \frac{-x^2 + 1}{2x}$ has

A. no straight line asymptotes.

B. y = 2x as its only straight line asymptote.

C. x = 0 as its only straight line asymptote.

D. y = 0 and $y = -\frac{1}{2}x$ as its only straight line asymptotes.

E. x = 0 and $y = -\frac{1}{2}x$ as its only straight line asymptotes.

Question 2

An antiderivative of $\frac{2}{\sqrt{4-x^2}}$ could be:

A. $\cos^{-1}\left(\frac{x}{2}\right)$ B. $2\cos^{-1}\left(\frac{x}{2}\right)$ C. $\sin^{-1}\left(\frac{x}{2}\right)$ D. $1-2\cos^{-1}\left(\frac{x}{2}\right)$ E. $\frac{1}{2}\sin^{-1}\left(\frac{x}{2}\right)$

If
$$z = 3 + 2i$$
 then $\frac{z}{z}$ is equal to:
A. 13
B. $\frac{5-12i}{5}$
C. $\frac{5-12i}{13}$
D. $\frac{13-12i}{5}$
13-12i

E.
$$\frac{13-12i}{13}$$

Question 4

The implied domain and range of $\sin^{-1}\left(\frac{x-1}{2}\right)$ respectively are:

A. $\left[-\frac{1}{2}, \frac{1}{2}\right]$ and $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ B. $\left[-2, 2\right]$ and $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ C. $\left[-2, 2\right]$ and $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ D. $\left[\frac{1}{2}, \frac{3}{2}\right]$ and $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ E. $\left[-1, 3\right]$ and $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

A unit vector perpendicular to the vector $\vec{i} + 2\vec{j} - 3\vec{k}$ is:

A.
$$\vec{i} + \vec{j} + \vec{k}$$

B. $-\vec{i} - 2\vec{j} + 3\vec{k}$
C. $\frac{1}{\sqrt{14}} \left(\vec{i} + 2\vec{j} - 3\vec{k}\right)$
D. $\frac{1}{\sqrt{6}} \left(\vec{i} - 2\vec{j} - \vec{k}\right)$
E. $\frac{1}{4} \left(-\vec{i} + 3\vec{k}\right)$

Question 6

Using a suitable substitution, $\int_{0}^{1} x^{3} \sqrt{1-x^{2}} dx$ can be expressed as:

A. $\int_{0}^{1} \left(u^{\frac{1}{2}} - u^{\frac{3}{2}} \right) du$ B. $\frac{1}{2} \int_{0}^{1} \left(u^{\frac{1}{2}} - u^{\frac{3}{2}} \right) du$ C. $\int_{0}^{1} \left(u^{\frac{3}{2}} - u^{\frac{1}{2}} \right) du$ D. $2 \int_{0}^{1} \left(u^{\frac{3}{2}} - u^{\frac{1}{2}} \right) du$ E. $2 \int_{0}^{1} \left(u^{\frac{1}{2}} - u^{\frac{3}{2}} \right) du$

SECTION 1 - continued

Question 7

The gradient of the curve $x^2 + (y-1)^2 = 4$ at the point in the third quadrant where x = -1 is:

A.
$$\frac{1}{\sqrt{3}}$$

B. $-\frac{1}{\sqrt{3}}$
C. $\frac{1}{\sqrt{5}}$
D. $-\frac{1}{\sqrt{5}}$
E. $1-\sqrt{3}$

Question 8

The rule of the relation determined by the parametric equations $x = 2\cos ec(t) + 1$ and $y = 3\cot(t) - 1$

A. $\frac{(x-1)^2}{4} - \frac{(y+1)^2}{9} = 1$ B. $\frac{(y+1)^2}{9} - \frac{(x-1)^2}{4} = 1$ C. $\frac{(x-1)^2}{4} + \frac{(y+1)^2}{9} = 1$ D. $\frac{(y+1)^2}{3} - \frac{(x-1)^2}{2} = 1$ E. $\frac{(x-1)^2}{2} - \frac{(y+1)^2}{3} = 1$

The region in the complex plane that is **outside** the circle of radius *b* centred at the origin is given by the set of points *z*, where $z \in C$, such that

A. |z| < b **B.** |z| > b**C.** $|z| < b^2$

- **D.** $|z| > b^2$
- **E.** |z| = b

Question 10

The solutions of the equation $z^2 = -2 - 2\sqrt{3}i$ in polar form are:

A.
$$4 \operatorname{cis}\left(-\frac{\pi}{3}\right)$$
, $4 \operatorname{cis}\left(\frac{2\pi}{3}\right)$
B. $4 \operatorname{cis}\left(-\frac{\pi}{3}\right)$, $4 \operatorname{cis}\left(\frac{\pi}{3}\right)$
C. $4 \operatorname{cis}\left(-\frac{2\pi}{3}\right)$, $4 \operatorname{cis}\left(\frac{\pi}{3}\right)$
D. $2 \operatorname{cis}\left(-\frac{2\pi}{3}\right)$, $2 \operatorname{cis}\left(\frac{\pi}{3}\right)$
E. $2 \operatorname{cis}\left(\frac{2\pi}{3}\right)$, $2 \operatorname{cis}\left(-\frac{\pi}{3}\right)$

SECTION 1 - continued

The shaded region, with boundaries not included, of the complex plane shown above is best described by:

A.
$$\left\{z : Arg(z) > \frac{\pi}{3}\right\}$$

B.
$$\left\{z : Arg(z) > \frac{\pi}{3}\right\} \cup \left\{z : Arg(z) < \frac{\pi}{2}\right\}$$

C.
$$\left\{z : Arg(z) > \frac{\pi}{3}\right\} \cap \left\{z : Arg(z) < \frac{\pi}{2}\right\}$$

D.
$$\left\{z : Arg(z) > \frac{\pi}{2}\right\} \cup \left\{z : Arg(z) < \frac{\pi}{3}\right\}$$

E.
$$\left\{z : Arg(z) > \frac{\pi}{2}\right\} \cap \left\{z : Arg(z) < \frac{\pi}{3}\right\}$$

The right-angled triangle shown below has sides represented by vectors a, b and c.

Which one of the following statements is **not** true?

A. $\left| a \right|^2 = \left| b \right|^2 + \left| c \right|^2$ B. $b \cdot (a - c) = \left| b \right|^2$ C. $b \cdot (a - b) = \left| b \right| \left| c \right|$ D. $b \cdot a = \left| b \right| \left| a \right| \cos(\theta)$ E. $c \cdot a = \left| c \right| \left| a \right| \sin(\theta)$

Question 13

A body of mass 4 kg slides from rest down a sloping plane of length 3 m. If it takes 2 seconds to slide down the plane, the body's momentum at the bottom of the plane, in kg m/s, is:

- **A.** 8
- **B.** 12
- **C.** 24
- **D.** 36
- **E.** 48

SECTION 1 - continued

Two forces P = 2i+3j and Q = 3i-4j act on a particle, of mass 2kg, at rest. The magnitude of the acceleration of the particle, in m/s², is:

- **A.** 2.5
- **B.** 4.9
- **C.** 5
- **D.** 5.1
- **E.** 6.5

Question 15

Euler's method, with a step size of 0.2, is used to solve the differential equation $\frac{dy}{dx} = e^{\sqrt{\frac{x}{2}}}$, with initial condition y = 2, when x = 0. The approximation for y when x = 0.4 is given by:

- **A.** $2 + 0.4 e^{\sqrt{0.2}}$
- **B.** $2 + 0.4 e^{\sqrt{0.1}}$
- **C.** $2.2 + 0.2 e^{\sqrt{0.1}}$
- **D.** $2.2 + 0.2 e^{\sqrt{0.2}}$
- **E.** $2 + 0.2 e^{\sqrt{0.1}} + 0.2 e^{\sqrt{0.1}}$

A 50L tank initially contains an acid solution of concentration 50%. Pure water flows into the tank at 2L/min. The solution is kept uniform by stirring, and flows out through a hole at the bottom of the tank at 2L/min. A differential equation for the mount of pure acid A litres in the tank after t minutes is:

A.
$$\frac{dA}{dt} = \frac{25}{A}$$

B.
$$\frac{dA}{dt} = -\frac{A}{25}$$

C.
$$\frac{dA}{dt} = 2 - \frac{25}{A}$$

D.
$$\frac{dA}{dt} = 2 + \frac{25}{A}$$

E.
$$\frac{dA}{dt} = \frac{25}{A} - 4$$

Question 17

The differential equation which best represents the above slope field could be:

A.
$$\frac{dy}{dx} = \frac{1}{2x}$$

B.
$$\frac{dy}{dx} = \frac{1}{x^2}$$

C.
$$\frac{dy}{dx} = x^3$$

D.
$$\frac{dy}{dx} = x^2$$

E.
$$\frac{dy}{dx} = \frac{1}{x^3}$$

SECTION 1 - continued

A body of mass 5.0 kg is sliding down a plane of inclination 15° . If the inclination is increased to 30° , by how much would the acceleration increase?

A.
$$\frac{\sqrt{6}-\sqrt{2}-2}{4}g$$

B. $\frac{5(\sqrt{6}-\sqrt{2}-2)}{4}g$
C. $\frac{\sqrt{6}-2\sqrt{3}+\sqrt{2}}{4}g$
D. $\frac{5(\sqrt{6}-2\sqrt{3}+\sqrt{2})}{4}g$
E. $\frac{\sqrt{6}-\sqrt{2}}{4}g$

Question 19

The region bounded by the lines x = 0, y = 3 and the graph of $y = x^{\frac{4}{3}}$ where $x \ge 0$ is rotated about the *y*-axis to form a solid of revolution.

The volume of this solid is:

A.
$$\frac{81\pi \times \sqrt[3]{9}}{11}$$

B. $\frac{12\pi \times \sqrt[4]{27}}{7}$
C. $\frac{18\pi \times \sqrt{3}}{5}$
D. $\frac{27\pi \times \sqrt[3]{3}}{11}$
E. $\frac{81\pi}{4}$

The velocity of a particle moving in a straight line is given by $v = \sqrt{9 - x^2}$, x > 0. The acceleration, in m/s², of the particle when velocity is $\sqrt{5}$ m/s is:

- **A.** -2
- **B.** 2
- **C.** 4
- **D.** -4
- **E.** 8

Question 21

A particle of mass 2 kg moves in a straight line with an initial velocity of 20 m/s. A constant force opposing the direction of the motion acts on the particle so that after 4 seconds its velocity is 2 m/s.

The magnitude of the force, in newtons, is:

- **A.** 4.5
- **B.** 6
- **C.** 9
- **D.** 18
- **E.** 36

Question 22

A mass of 60kg sits on the floor of a lift moving down, but decelerating at $\frac{g}{4}m/s^2$, where g is the acceleration due to gravity. The reaction of the lift floor on the body, in Newtons, is:

- **A.** 45
- **B.** 60
- **C.** 75
- **D.** 45*g*
- **E.** 75*g*

END OF SECTION 1

SECTION 2

Instructions for Section 2

Answer **all** questions.

A decimal approximation will not be accepted if the question specifically asks for an **exact** answer.

For questions worth more than one mark, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams are not drawn to scale.

Take the **acceleration due to gravity**, to have magnitude $g \text{ m/s}^2$, where g = 9.8.

Question 1 (11 marks)

A curve is defined by the parametric equations

$$x = -3 - 2\cos\left(\frac{t}{2}\right)$$
 and $y = 4 + 3\sin\left(\frac{t}{2}\right)$ for $t \in [0, 4\pi]$

a. Find the Cartesian equation of the curve.

b. Find the values of t for which the gradient of the curve is $-\frac{3\sqrt{3}}{2}$. 4 marks

SECTION 2 - Question1 - continued TURN OVER

2 marks

c. Sketch the graph of the curve whose parametric equations are given below. Label the axes intercepts.

$$x = 1 - 2\cos(t)$$
 and $y = 3\sin(t)$ 2 marks

The region in the first quadrant bounded by the above graph, *x*-axis and lines x = 1 and x = 2.5 is rotated about the *x*-axis to form a solid of revolution.

d. Write down an integral that will give the volume of this solid. 2 marks

e. Find the volume of this solid of revolution.

SECTION 2 - continued

1 mark

Question 2 (10 marks)

Let the regions S_1 and S_2 be defined as follows on the complex plane.

$$S_1: \{z: |z-2| = 2, z \in C\}$$

 $S_2: \{z: \operatorname{Re}(z) + \operatorname{Im}(z) = 4, z \in C\}$

a. Sketch both the regions on the axes below. Shade the region bound by the two lines.

4 marks

b. Find the area of the shaded region.

2 marks

SECTION 2 - Question 2 - continued TURN OVER

- S_3 is the region defined as $S_3: \{z: |z+2+2i| = 2, z \in C\}$
- **c.** Sketch the region S_3 on the axes given in part **a**. 2 marks
- **d.** Find the minimum value of $|z_1 z_3|$ where $z_1 \in S_1$ and $z_3 \in S_3$ 2 marks

Question 3 (16 marks)

Two bodies of mass 3 kg and 7 kg rest on a smooth horizontal plane. The bodies are acted on by a force of F newtons, acting in the horizontal direction, which just brings the body to the point of moving.

a. Draw all the forces acting on the body in the diagram below. 4 marks

b. What is the acceleration of the two blocks in terms of *F*? 2 marks

SECTION 2 - Question 3 - continued

c.	What is the magnitude of force applied by the 3kg block on the 7 kg block?	2 marks
d.	If the force applied on the block is 120N, find the acceleration of the two blocks	5.

1 mark

A block of mass 10kg rests on a smooth inclined plane making an angle of 30° with the horizontal.

e. Mark all the forces acting on the body in the diagram below. 2 marks

SECTION 2 - Question 3 - continued TURN OVER

f. Find the acceleration of the block. 3 marks

g. Find the force exerted by the block on the incline, correct to two decimal places.

2 marks

SECTION 2 - continued

Question 4 (12 marks)

The position vectors, at time *t* seconds, where $t \ge 0$, of two particles *A* and *B* are given respectively by

$$r_{A}(t) = (t^{3} - 9t + 8)i + t^{2} j$$

$$r_{B}(t) = (2 - t^{2})i + (3t - 2) j$$

a. Prove that the two particles collide. Find the time when they collide. 4 marks

b. Show that the particles are at the same speed at the time of collision. Hence, find the speed.
 3 marks

c. Find $r_{a}(t) \bullet r_{B}(t)$ at the time of collision.

1 mark

SECTION 2 - Question 4 - continued TURN OVER

 d. Interpret the result obtained in part c.
 2 marks

 e. Find the acceleration of particle *B* at the time of collision.
 2 marks

Question 5 (9 marks)

The number of insects, N, in a certain area after t years, may be modelled by

$$\log_e N = 6 - 3e^{-0.4t}$$
, $t \ge 0$

a. Verify that $\log_e N = 6 - 3e^{-0.4t}$ satisfies the differential equation 2 marks

$$\frac{1}{N}\frac{dN}{dt} + 0.4\log_e N - 2.4 = 0$$

SECTION 2 - Question 5 - continued

b. Find the initial number of insects in the area. Give your answer to the nearest integer.

1 mark

c. Using this mathematical model, find the limiting number of insects that would eventually be present in this area.
 2 marks

d. Find $\frac{d^2 N}{dt^2}$ in terms of N and $\log_e N$

2 marks

SECTION 2 - Question 5 - continued TURN OVER

e. The graph of *N* as a function of *t* has a point of inflection. Find the value of the coordinates of this point, correct to the nearest integer values.2 marks

END OF QUESTION AND ANSWER BOOK

Multiple choice answer sheet

Instructions: <u>Circle</u> the correct response

1.	Α	В	С	D	Ε
2.	Α	В	С	D	Ε
3.	Α	В	С	D	Ε
4.	Α	В	С	D	Ε
5.	Α	В	С	D	Ε
6.	Α	В	С	D	Ε
7.	Α	В	С	D	Ε
8.	Α	В	С	D	Ε
9.	Α	В	С	D	Ε
10.	Α	В	С	D	Ε
11.	Α	В	С	D	Ε
12.	Α	В	С	D	Ε
13.	Α	В	С	D	Ε
14.	Α	В	С	D	Ε
15.	Α	В	С	D	Ε
16.	Α	В	С	D	Ε
17.	Α	В	С	D	Ε
18.	Α	В	С	D	Ε
19.	Α	В	С	D	Ε
20.	Α	В	С	D	Ε
21.	Α	В	С	D	Ε
22.	Α	В	С	D	Ε