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SECTION 1 – Multiple-choice answers 

 

1. A  7. E   13. A  19. E 

2. C  8. B   14. D  20. A 

3. E  9. E   15. D  21. D 

4. C  10. B   16. C  22. E 

5. B  11. B   17. D 

6. C  12. C   18. D 

 

SECTION 1 - Multiple-choice solutions 

 

Question 1 
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The only axis intercept occurs at (0,2) . 

The answer is A. 

 

Question 2 
 

The graph of f (x) = x +
2

x 2
 has two asymptotes, one with equation y = x  and the other with 

equation  x = 0.  Immediately we see that option C cannot be true as both the asymptotes 

are straight lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The answer is C. 
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Question 3 
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The answer is E. 

 

Question 4 

 

For f (x) = a sin
−1

(bx +1)  

 

               

−1 ≤ bx +1 ≤1

−2 ≤ bx ≤ 0

−2

b
≤ x ≤ 0

 

Since d f = −
2

b
,0

 

  
 

  
 and d f = [−6,0], 

then  −
2

b
= −6

b =
1

3

Also  −
π

2
≤

y

a
≤

π

2

−
πa

2
≤ y ≤

πa

2

Since   rf = [−π,π]

πa

2
= π

a = 2

 

The answer is C. 

 

Question 5 

 

The modulus of z is the distance from the origin 

to the point on the Argand diagram represented by z.  

Since z lies on the imaginary axis, there are two  

possible values of z, as shown on the diagram. 

One is 3i  and the other is − 3i . 

Only the latter is offered in the answers. 

The answer is B. 
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Question 6 
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The imaginary part is −
1

2 3
. 

The answer is C. 

 

 

Question 7 
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The answer is E. 

 

 

Question 8 
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For the principle valued argument, −π < θ ≤ π .  (formula sheet) 

So 
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6

5
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6
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The answer is B. 
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Question 9 
Do a quick sketch. 

2)3(

23
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iz
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The lines 1)Im( and 1)Re( −=−= zz  are both tangents to the circle. 

The lines given in options B and D don’t intersect with the circle at all. 

The line z −1 = z − 3i  intersects twice.   

The answer is E. 

Question 10 
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The answer is B. 

Question 11 
Method 1 

At x = 0,
dy

dx
 is undefined, so eliminate options C and E. 

For x ∈ R \{0},
dy

dx
> 0, so eliminate options A and D. 

The answer is B. 

Method 2 

The slopes 








dx

dy
 are influenced by x-values only, so A and B are the only possibilities. 

The slopes are non-negative so it must be B. 

The answer is B. 
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Question 12 
 

dy

dx
= x

2
y + 3x, y =1  when  x = 2 

So,  x0 = 2 y0 =1

x1 = 2.1 y1 =1+ 0.1(22 ×1+ 3× 2)

= 2

x2 = 2.2 y2 = 2 + 0.1(2.12 × 2 + 3× 2.1)

= 3.512

 

The answer is C. 

 

 

Question 13 
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1
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1
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x
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Let  u =1+ 2x  

    
du

dx
= 2 

Since   u =1+ 2x Also, x = 2, u = 5

2x = u −1 x =1, u = 3
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The answer is A. 

 

 

Question 14 

 

Draw a diagram. 

Add tip to tail to get the resultant vector R
~

. 
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The answer is D. 
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Question 15 
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The answer is D. 

 

Question 16 
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θ  must be a second quadrant angle. 

 

So sin(θ) =
21

5
(sin is positive in the second quadrant) 

The answer is C. 

 

 

Question 17 
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The answer is D. 
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Question 18 
 

Draw in the forces.  

Find T1. 

Resolving horizontally: 

  

T1 = T2 sin(30
�
)

=
T2

2
− (1)

 

Resolving vertically: 

3

6

3
2

3

3)30cos(

2

2

2

g
T

gT

gT

=

=

=�

 

In  (1) T1 =
6g

2 3

=
3 3g

3

= 3g

 

 

The answer is D. 

 

 

 

Question 19 
 

Since 3m > m , the 3m kg particle will  

accelerate downwards and so the m kg  

particle will accelerate upwards. 

 

For the 3m kg particle, 

)1(33 −=− maTmg  

 

For the m kg particle, 
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g

m
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v = 24.5 v = u + at

u = 0 24.5 = 0 + 4.9 × t

t = ? t = 5

 

The answer is E. 

°30

°30

3k  objectg

ceiling

wall

1T

2T

 

mg

T T

3mg  



8 

 

© THE HEFFERNAN GROUP 2015                           Specialist Maths Trial Exam 2 solutions 

Question 20 
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The answer is A. 

 

 
Question 21 
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The answer is D. 
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The particle will also be at rest where x = ±3. 

 

The answer is E. 
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SECTION 2  

 

Question 1 (11 marks) 

 

a.          
t
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 (1 mark) 
 

b.    x = t + 2t
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+1 y = t − 2t
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When 
dy

dx
= 2, 

2 =
t

2
+ 2

t2 − 2
 

Method 1 - solve for t using CAS 

t = ± 6  
 (1 mark) 

 Method 2 – solve for t by hand 

 2)2(2 22 +=− tt  

           62 =t  

            t = ± 6  
(1 mark) 

(1 mark) 

(1 mark) 

(1 mark) 
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c.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Asymptotes : y = ±
8

8
(x −1)

y = ± (x −1)

 

x-intercepts occur when y = 0 

             1
8

)1( 2

=
−x

 

      221or    221 +=−= xx  

(1 mark) – correct asymptotes 

(1 mark) – correct x-intercepts 

(1 mark) – correct shape 
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(1 mark) – correct integrand 

(1 mark) – correct terminals 

(1 mark) – correct answer 
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Question 2 (13 marks) 

 

a. z1 = 3 + i  
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 (1 mark) – correct modulus 

(1 mark) – correct argument 
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So 1z  satisfies the equation.           (1 mark) 
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2
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                                                                              312 += kp  (1 mark) 

(1 mark) 

(z)Re
1

Im(z)

3
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d. i.                  z − 2z1 = z  
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 (1 mark) 

ii. Method 1 

3

2
3

3

2
1 +−=+ iz  

              i−=
3

5
 

So 
3

2
1 +z  corresponds to the point 

5

3
,−1

 

 
 

 

 
  on the Cartesian plane. 

(1 mark) 

From part i., the Cartesian equation of the relation z − 2z1 = z  is 3x + y = 4 . 

Substituting the point into this relation gives 

LS = 3 ×
5

3
−1

= 4

= RS

 

 (1 mark) 

 
Method 2 

To Show z 1 +
2

3
− 2z1 = z 1 +

2
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(1 mark)          (1 mark) 

(1 mark) 

RS = z 1 +
2

3

= 3 − i +
2

3

=
3+ 2

3
− i

=
25

3
+1

=
28

3

= LS
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e. i. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(1 mark) for L including axes intercepts 

(1 mark) for 
6

)(Arg
π

=z  including excluded origin 

ii.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Start by finding the point of intersection of L and 
6

)(Arg
π

=z .  

6
)(Arg

π
=z can be expressed in Cartesian form as y =

1

3
x . 

43or      43  is  +−==+ xyyxL  

43
3

1
    So +−= xx  

Solve using CAS, 3=x  1so =y . 

A is the point ( )1,3 .           (1 mark) 

ACDABO ∆∆   and   are similar because CADBAO ∠=∠  (vertically opposite 

angles), ADCABO ∠=∠ (alternate angles) and ACDAOB ∠=∠ (alternate 

angles). They will be congruent, and therefore have the same area, when 

k = 2 3 . 

(1 mark) 

Re( )z

L

5

4

-5

-5

5

O

Im( )z

6

π

6
)(Arg

π
=z

3

4

 

1

6
π

3  

Re( )z

L

A

B

C

D

5k

4

1

-5

5

O

Im( )z

6

π

6
)(Arg

π
=z

kz =)Re(
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 Question 3 (12 marks) 

 

a. 
~~~

)sin(3)cos()( jtitts ππ +=  

 

1
3

)(sin)(cos
3

)(sin
3

)(sin3)(cos

)sin(3)cos(
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  (1 mark) 

b.  

 

 

 

 

 

 

 

 

 

 

 

 

(1 mark) – correct axes intercepts 

(1 mark) – correct shape 

c. r
~
(0) = sin(0) i

~
+ cos(0) j

~
 

       = 0 i
~
+ j

~
 

For drone R, the starting position is (0,1) .         (1 mark) 

 

~~

~~~

0

)0sin(3)0cos()0(

ji

jis

+=

+=

 

For drone S, the starting position is (1,0) .         (1 mark) 

 

d. For the drones to meet, 
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7
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1
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9
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4

5
,

4

1

...
6

13
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6

7
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6
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4

9
,

4

5
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==

==

==

==
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tt

tttt

πππ
π

πππ
π

ππ

ππππ

 

Since the displacement components are not equal at the same time, the drones never 

meet. 

(1 mark) 

(1 mark) 

(1 mark)  
S

T

A

C
 

x
1

1

-1

-1

y

3

3−
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e.   r
~
(t) = sin(πt) i

~
+ cos(πt) j

~
 

km/hr )()3(

0

)3sin()3cos()3(

)sin()cos()(

2

~
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~~~
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ππ

π

ππππ
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−=

−=

r
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�

�

 

 (1 mark) 

 

f.   
~~~

)cos()sin()( jtittr ππ +=  
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~

~

2

~

~

2

~

2

~

~

2

~

2

~

~~~
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(1 mark) 

 

g.             
~~~

)sin()cos()( jtittr ππππ −=�  

000
2

1

2

1

0
2

1

)cos(3)sin()(

0
2
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ππππ

π
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��

�

�
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Since 0
2

1

2

1
~~

=















• sr �� , the drones must be travelling in directions that are 

perpendicular to each other. 

(1 mark)  

(1 mark)  
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Question 4 (10 marks) 

 

a. When t = 0, tan
N − 50π

100

 

 
 

 

 
 = −4 

Solve for N using CAS 

0for    ...4978.24

4

1
tan100 1

==

















+= −

kN

kN π
 

The number of pre-sold apartments is 24 (to the nearest integer). 

(1 mark) 
 

b. As t → ∞, tan
N − 50π

100

 

 
 

 

 
 → ∞  

so, 
N − 50π

100

 

 
 

 

 
 →

π

2

and so N →100π

 

The limiting number is 314 (to the nearest integer). 

 (1 mark) 

 

c. Differentiate the equation 
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2
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π
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N

dt
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N
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=
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=








 −
×−







 −
=

−






 −
=

=−






 −

0

100

50
cos

100

50
cos

100

50
cos

3

10

10

3

100

50
cos

3.0
100

50
cos

03.0
100

50
cosNow,

22

22

2

2

ππ

ππ

π

π

 

(1 mark) 
 

(1 mark) 
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d. Method 1 – using the given expression 









+






 −










=









+






 −


















=









+






 −
×


















=

×







=









=

1
100

50
tan9

50
sin

1
100

50
tan9

100
cos

100
sin2

1
100

50
tan3

10

15

100
cos

100
sin

2

2

2

2

2

π

π

π

N

N

N

NN

N

NN

dt

dN

dt

dN

dN

d

dt

dN

dt

d

dt

Nd

 

We are told that the graph has a point of inflection so this occurs when 
d

2
N

dt2
= 0. 

Solve 0
50

sin =






 N
 for N. 

                   positive) is  that (note           ...,2,,0
50

N
N

ππ=  

                    
. function  theof range  thehinanswer witonly   theis  50

          ...,100,50,0

NN

N

π

ππ

=

=
 

 

So N = 50π  

Substitute this into 

tan
N − 50π

100

 

 
 

 

 
 =

t

30
− 4

t =120

 

So a =120 and b = 50π  

(1 mark) for a 

(1 mark) for b 

 

(1 mark) 

(1 mark) 
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Method 2 – otherwise 

From part c., 03.0
100

50
cos2 =−







 −

dt

dNN π
 

So                                               






 −
=

100

50
cos

3

10 2 πN

dt

dN
 

9

100

50
cos

100
cos

100
sin2

3

100

50
cos10

15

100
cos

100
sin

50

100
cos

100
sin

3

10

so,

2

2

2

2








 −

















=








 −

×


















=

×


















×=

×







=









=

π

π

NNN

NNN

dt

dN

NN

dt

dN

dt

dN

dN

d

dt

dN

dt

d

dt

Nd

 

We are told that the graph has a point of inflection. This occurs when 
d

2
N

dt2
= 0. 

Solve N
NNN

for  0
100

50
cos

100
cos

100
sin 2 =







 −















 π
        (1 mark) 

N = 50(2k −1)π  or  N =100kπ  

ππ

π

100or  50,1For  

0or  50,0For  

===

=−==

NNk

NNk
 

. function  theof range  thehinanswer witonly   theis  50 and positive is  that Note NNN π=

Substitute N = 50π  into   4
30100

50
tan −=







 − tN π
, so 120=t . 

So a =120 and b = 50π  as required.  

(1 mark) for a 

(1 mark) for b 

e.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (1 mark) – correct endpoints i.e. (0,24.5) and (500,306)  

(1 mark) – correct shape including point of inflection located at (120,50π)  

(1 mark) 

50
   (0, 24.5)

   

(500, 306)
   

100
   

150
   

200
   

250
   

300
   

350
   

N
  

t
500400300200100

)50,120( π
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Question 5 (12 marks) 

 

a.  

 

 

 

 

 

 

 

 

 

i. Around the 7kg mass: 
7gsin(θ) − T = 7a − (1)  

 

ii. Around the 3kg mass: 
          T − 3g = 3a − (2)  

 

iii. (1) gives T = 7gsin(θ) − 7a  

(2) gives T = 3g + 3a  

required. as

10

)3)sin(7(

10

))sin(73(

)sin(7310

337)sin(7  So

−
=

−

−
=

−=−

+=−

θ

θ

θ

θ

g

g
a

gga

agag

 

(1 mark) 
 

iv. If the system is in equilibrium then a = 0. 

�4.25

7

3
)sin(

0
10

)3)sin(7(
  So

=

=

=
−

θ

θ

θg

 

 (correct to 1 decimal place) 

(1 mark) 
 

v. When the 2kg mass is moving vertically upwards, a > 0. 

So   
g(7sin(θ) − 3)

10
> 0

7sin(θ) − 3 > 0

sin(θ) >
3

7

 

                 25.4
�

< θ < 90
�
 

(1 mark) 
 

(1 mark) 

(1 mark) 

3g

7g

T

T

N

θ  
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b. Around the 7kg mass: 

  

7gsin(30
�
) = T + Fr

Fr = 3.5g − T − (1)

and N = 7gcos(30�) = 59.4093...

 

 

 

 

Around the 3kg mass: 
                     T = 3g − (2)  

In (1) gives Fr = 3.5g − 3g = 4.9 (1 mark) 

 

If the 7kg mass is on the point of moving  

then Fr = µN . 

6.2973...

59.4093...0.106 Now       

=

×=Nµ
 

Since  NFr µ<<   then,...2973.69.4  and the mass is not at the point of moving. 

(1 mark) 

 

c. i. 
  
7gsin(30

�
) − Fr = 7a  

          

)0.01m/snearest   the(to   m/s00.4

...00037.4

7

3.5g
 So

2

37

)30cos(7 Also

7

5.3

75.3

22=

=

−
=

=

=

−
=

=−

N
a

g

gN

Frg
a

aFrg

µ

�

 

 (1 mark) 

ii. 3g = 3a  

  a = gm/s
2
 

The 3kg mass is subject only to gravitational 

force so its acceleration is g m/s
−2

 or 2m/s 8.9 − . 

(1 mark) 

d. Both masses are travelling with constant acceleration. 

So, using v
2

= u
2

+ 2as  

s

sv

s

sv

24

300.420 mass, 7kg for the

6.19

8.920 mass, 3kg for the

2

2

=

××+=

=

××+=

          (1 mark) 

152:7

60:49

240:196

24:19.6s is speeds of ratio So s

 

(1 mark) 

3g  

(1 mark) 

7g

T

Fr

N

°30  

3g

T

 

7g

Fr

N

motion

°30  


