••	•			
••••	•••••••••	•••••	••••	

Online & home tutors Registered business name: itute ABN: 96 297 924 083

Specialist Mathematics

2015

Trial Examination I (1 hour)

Instructions

Answer **all** questions. Do **not** use calculators.

A decimal approximation will not be accepted if an **exact** answer is required to a question. In questions where more than one mark is available, appropriate working or explanation **must** be shown. Unless otherwise indicated, the diagrams in this exam are **not** drawn to scale.

Question 1

Consider the set of complex numbers $S = \left\{ z : \frac{1}{\overline{z}} - \frac{1}{\overline{z}} = i \right\}.$

a. Find the Cartesian equation representing *S* in the *x*-*y* plane.

- b. For $z \in S$, find the possible values of $\operatorname{Re}(z)$.
- c. For $z \in S$, find the possible values of Im(z).
- d. Sketch the graph of *S* on the Argand plane.

2

2 marks

1 mark

1 mark

2 marks

Consider polynomial $P(z) = z^3 - 2iz^2 + 2z - 2i$. Let α , β and γ be the roots of P(z) = 0. a. Show that $\alpha + \beta + \gamma = 2i$.

b. Show that $(i - \alpha)(i - \beta)(i - \gamma) = i$.

c. Use part a and part b to find the value of $(\alpha + \beta - \gamma)(\beta + \gamma - \alpha)(\gamma + \alpha - \beta)$.

Question 3

Triangle *OAB* is defined by two non-parallel and non-zero vectors $\overrightarrow{OA} = \widetilde{a}$ and $\overrightarrow{OB} = \widetilde{b}$. The area of the triangle is given by $|\widetilde{a}||\widetilde{b}|\sin\theta$ where θ is the angle between vectors \widetilde{a} and \widetilde{b} .

3

1 mark

2 marks

1 mark

3 marks

Let $\tilde{p} = \frac{2}{3}\tilde{i} + \frac{1}{3}\tilde{j} + \frac{2}{3}\tilde{k}$, $\tilde{q} = -\frac{1}{3}\tilde{i} - \frac{2}{3}\tilde{j} + \frac{2}{3}\tilde{k}$ and $\tilde{r} = \frac{2}{3}\tilde{i} - \frac{2}{3}\tilde{j} - \frac{1}{3}\tilde{k}$ be vectors in 3-dimensional space defined by perpendicular unit vectors \tilde{i} , \tilde{j} and \tilde{k} .

a. Show that \tilde{p} , \tilde{q} and \tilde{r} are unit vectors.

b. Show that \tilde{p} , \tilde{q} and \tilde{r} are perpendicular to each other.

c. Show that $\tilde{s} = \tilde{i} - \tilde{j} + \tilde{k}$ can be expressed as $\tilde{s} = \tilde{p} + \tilde{q} + \tilde{r}$.

d. Given $\tilde{t} = \frac{2}{\sqrt{3}} \tilde{p} - \sqrt{3} \tilde{q} + \frac{1}{\sqrt{3}} \tilde{r}$, find $\tilde{s} \cdot \tilde{t}$.

4

1 mark

1 mark

2 marks

Consider
$$f:\left[\pi,\frac{3\pi}{2}\right] \to R, f(x) = \frac{1}{2}\cos(2x)$$
.

a. Sketch the graph of f^{-1} . Show and label endpoint(s) and intercept(s).

2 marks

b. Find the rule of f^{-1} in terms of the arccos (i.e. \cos^{-1}) function.

c. Find the equation of the normal to the graph of f^{-1} at x = 0.

2 marks

2 marks

The solution curve to the differential equation $\frac{dy}{dx} - \frac{x^2}{2y} = 0$ passes through (2, 1).

a. Use Euler's method (first order approximation) to estimate the value of y at x = 3. Choose 0.5 as the step size.

2 marks

1 mark

b.	Show that	$y = \sqrt{1}$	$\frac{x^3-5}{3}$	is the equation of the solution curve
----	-----------	----------------	-------------------	---------------------------------------

Question 7

A solid of revolution is formed by revolving y = f(x) about the x-axis, where $f(x) \ge 0$ for $0 \le x \le 2$. The volume of the solid is given by $V = \int_{0}^{2} \pi (2x - x^{2}) dx$. a. Find f(x).

b. Find the area enclosed by y = f(x) and y = -f(x).

2 marks

1 mark

A 0.4 kg particle moves with acceleration $\tilde{a} = \frac{g}{4} \left(\sqrt{3} \, \tilde{i} - \tilde{j} \right)$ in a vertical x-y plane, where $g = 9.8 \text{ m s}^{-2}$.

 \tilde{i} is a horizontal unit vector in the positive x-direction, and \tilde{j} is a unit vector pointing vertically upwards in the positive y-direction.

The particle starts from rest at position $\tilde{r} = 10\tilde{j}$.

a. Find the exact time t in seconds when the particle is at $\tilde{r} = 10\sqrt{3}\tilde{i}$. Express your answer in terms of g.

3 marks

b. Find the exact speed in m s⁻¹ of the particle at $\tilde{r} = 10\sqrt{3}\tilde{i}$. Express your answer in terms of g. 2 marks

c. Find the magnitude of the resultant force (net force) in newtons at t = 1 second. 1 mark

A particle is in equilibrium under the action of three forces \tilde{F}_1 , \tilde{F}_2 and \tilde{F}_3 .

- $\tilde{F}_1 = \sqrt{7}$ newtons, $|\tilde{F}_3| = 3|\tilde{F}_2|$, and the angle between \tilde{F}_2 and \tilde{F}_3 is 120°.
- a. Find the exact magnitude of \tilde{F}_3 in newtons.

2 marks

b. \tilde{F}_2 and \tilde{F}_1 make an acute angle θ where $\sin \theta = \alpha \sqrt{\beta}$. Find the exact value of α and β . 2 marks

End of Exam 1