•••		••••				
••••	• •••	 	 •••	 	•• • ••	

Online & home tutors Registered business name: itute ABN: 96 297 924 083

Specialist Mathematics

2015

Trial Examination 2 (2 hours)

SECTION 1 Multiple-choice questions

Instructions for Section 1

Answer **all** questions. Choose the response that is **correct** for the question. A correct answer scores 1, an incorrect answer scores 0. Marks will **not** be deducted for incorrect answers. **No** marks will be given if more than one answer is completed for any question. Unless otherwise indicated, the diagrams in this exam are **not** drawn to scale. Take the **acceleration due to gravity** to have magnitude $g \text{ ms}^{-2}$, where g = 9.8.

Question 1 (1, 1) is a point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. The line which is **NOT** an asymptote of $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is

- A. bx + ay = 0
- $B. \quad x \sqrt{1 a^2} \ y = 0$
- $C. \quad \sqrt{1+b^2} \ x y = 0$
- $D. \quad x \sqrt{a^2 1} \ y = 0$
- $E. \quad \sqrt{b^2 + 1} x + y = 0$

Question 2 The range of function f with the rule $f(x) = \cos^{-1}(ax) - \frac{\pi}{2}$ is $\left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$. For a > 0, the domain of f is

A. $\left[-\frac{a}{\sqrt{2}}, \frac{a}{\sqrt{2}}\right]$ B. $\left[-\frac{1}{\sqrt{2}a}, \frac{1}{\sqrt{2}a}\right]$ C. $\left[-\frac{\sqrt{3}a}{2}, \frac{\sqrt{3}a}{2}\right]$ D. $\left[-\frac{\sqrt{3}}{2a}, \frac{\sqrt{3}}{2a}\right]$ E. $\left[\frac{\sqrt{3}a}{2}, -\frac{\sqrt{3}a}{2}\right]$

Question 3 For $b \in \mathbb{R}^+$, $\left\{z : \operatorname{Arg}(z) = \frac{\pi}{3}\right\} \cap \left\{z : |z - ib\sqrt{3}| = |z - b|\right\}$ is A. $\left\{\frac{b}{2} + \frac{ib\sqrt{3}}{2}\right\}$ B. $\left(\frac{b\sqrt{3}}{2}, \frac{b}{2}\right)$ C. $\left\{\frac{b\sqrt{3}}{2} + \frac{ib}{2}\right\}$ D. $\left(\frac{\sqrt{3}}{2}, \frac{i}{2}\right)$ E. $\left\{\frac{1}{2} - \frac{i\sqrt{3}}{2}\right\}$

Question 4 A possible factor of $z^5 + i$ is

- A. *z*+1
- B. z-i
- C. *z*-1
- D. $z^4 iz^3 z^2 + iz + 1$
- E. $z^4 iz^3 + z^2 iz + 1$

Question 5 Given $f: \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \to R, f(x) = \sin x$, A. $f^{-1}(x) = \sin^{-1} x + \frac{\pi}{2}$ B. $f^{-1}(x) = \sin^{-1} x$ C. $f^{-1}(x) = \cos^{-1} x + \frac{\pi}{2}$ D. $f^{-1}(x) = \cos^{-1} x$ E. $f^{-1}(x) = \sin^{-1} x - \frac{\pi}{2}$

2015 Specialist Mathematics Trial Exam 2

Question 6 For non-zero $a, b \in R$, $\frac{d}{dx} \left[\cot^2 \left(\frac{a+2x}{b\sqrt{x}+1} \right) - \csc^2 \left(\frac{a+2x}{b\sqrt{x}+1} \right) \right] =$

- A. 1
- B. $\frac{2}{b}\sin\left(\frac{a+2x}{b\sqrt{x}+1}\right)$
- C. 0
- D. $\frac{2}{b}\cos\left(\frac{a+2x}{b\sqrt{x}+1}\right)$
- E. -1
- **Question 7** Given $\frac{z+1}{z+i} = i$, Arg(z) =A. 0.79 B. 2.4 C. -0.79 D. -0.75 π
- E. -0.25π

Question 8 For $x \in \left[-\frac{\pi}{2}, \frac{3\pi}{2}\right]$, the exact solution(s) to $\left(\sin x + 1\right)\left(\tan x + \frac{3}{2}\right) = 0$ is/are A. $-\frac{\pi}{2}, \frac{3\pi}{2}, \tan^{-1}\left(-\frac{3}{2}\right)$ B. $\frac{3\pi}{2}, \tan^{-1}\left(-\frac{3}{2}\right)$ C. $-\frac{\pi}{2}, \tan^{-1}\left(-\frac{3}{2}\right)$ D. $-\frac{\pi}{2}, \frac{3\pi}{2}$ E. $\tan^{-1}\left(-\frac{3}{2}\right)$

Question 9 For $a, b, \alpha, \beta \in \mathbb{R}^+$, the area of the smallest rectangle which can cover the graph of $\frac{(x+\alpha)^2}{a^2} + \frac{(y-\beta)^2}{b^2} = 1$ is
A. $(a-\alpha)(b+\beta)$

- B. $4(a+\alpha)(b-\beta)$
- C. 4*ab*
- D. $4\alpha\beta$
- E. $\alpha\beta ab$

Question 10 The line y = mx is a tangent to the curve $y = \tan^{-1} x - \frac{\pi}{4}$. The value of *m* is closest to

- A. 0.08
- B. 0.12
- C. 0.16
- D. 0.20
- E. 0.24

Question 11 A vector makes the same angle θ with three mutually perpendicular vectors \tilde{a}, \tilde{b} and \tilde{c} . A possible value of θ is

A.
$$\frac{\pi}{4}$$

B. $\frac{3\pi}{4}$
C. $\cos^{-1}\left(-\frac{1}{\sqrt{3}}\right)$
D. $\sin^{-1}\left(-\frac{1}{\sqrt{3}}\right)$
E. $\tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$

Question 12 Vectors $\tilde{a} = \tilde{i} + \sqrt{2} \tilde{j} - \tilde{k}$ and $\tilde{b} = -\sqrt{2} \tilde{i} + 2\tilde{j} + \sqrt{2} \tilde{k}$ are on the same plane. Another possible vector on the plane is

- A. $\frac{1}{2}\tilde{j}$
- B. $\frac{1}{2}\tilde{i} + \frac{1}{2}\tilde{k}$
- C. $\frac{1}{2}\tilde{i} + \frac{1}{\sqrt{2}}\tilde{j} + \frac{1}{2}\tilde{k}$
- D. $-\frac{1}{2}\tilde{i} + \frac{1}{\sqrt{2}}\tilde{j}$
- E. $-\frac{1}{\sqrt{2}}\tilde{i}$

Question 13 Given $\overrightarrow{AB} = 4\widetilde{i} - 4\widetilde{j}$ and $\overrightarrow{AC} = -\widetilde{j} + 12\widetilde{k}$, the shortest distance from point *C* to vector \overrightarrow{AB} is closest to

- A. 11.5
- B. 12.0
- C. 12.5
- D. 13.0
- E. 13.5

Question 14 Let A be the area of the region enclosed by the x-axis, the line x = a and the curve $y = \tan^{-1}\left(\frac{x}{a}\right)$, where $a \in R^+$. Which one of the following statements is correct?

- A. $A = \int_{0}^{\frac{\pi}{4}} \tan^{-1}\left(\frac{x}{a}\right) dx$ B. $A = a \left(\frac{\pi}{4} - \int_{0}^{\frac{\pi}{4}} \tan x \, dx\right)$ C. $A = \frac{\pi}{4} - a \int_{0}^{\frac{\pi}{4}} \tan x \, dx$
- D. $A = \frac{a\pi}{4} \int_{0}^{\frac{\pi}{4}} \tan x \, dx$
- E. $A = \frac{\pi}{4} \int_{0}^{\frac{a\pi}{4}} \tan x \, dx$

2015 Specialist Mathematics Trial Exam 2

Question 15 The region enclosed by the curve $y = \sin^{-1}\left(\frac{x}{x^2+1}\right)$ and the *x*-axis from x = 0 to x = 4 is rotated about the *x*-axis. The volume of the solid of revolution is closest to

- A. 0.9
- B. 1.2
- C. 1.5
- D. 1.8
- E. 2.1

Question 16 Given $f'(x) = \log_e \sqrt{x^2 + 1}$ and f(2) = 2, the value of f(0) is closest to

- A. 0.7
- B. 0.9
- C. 1.1
- D. 1.3
- E. 1.5

Question 17 Given $f(x) = \log_e\left(\frac{a \cos^{-1} x}{b}\right)$, $a, b \in R^+$, the value of $f'\left(\frac{1}{2}\right)$ is

- A. $\frac{6b}{\sqrt{3}a\pi}$
- B. $-\frac{6}{a\pi}$
- C. $\frac{a\pi}{\sqrt{3}b}$
- D. $-\frac{2\sqrt{3}}{\pi}$
- E. $\frac{6}{\sqrt{3}\pi}$

Question 18 A particle moves in a plane with position $\tilde{r}(t)$ and velocity $\tilde{v}(t) = 2t \tilde{i} - \tilde{j}$, $t \ge 0$. The straight-line distance from $\tilde{r}(1)$ to $\tilde{r}(2)$ is closest to

- A. $2\sqrt{2}$
- B. 3
- C. $\sqrt{10}$
- D. $\sqrt{11}$
- E. $2\sqrt{3}$

Question 19 The position of a particle is given by $\tilde{r} = 4.9t \,\tilde{i} + 4.9 \left(\sqrt{3}t - t^2\right) \tilde{j}$ where $t \ge 0$. The minimum speed of the particle is

- A. 4.9
- B. 9.8
- C. $4.9(1+\sqrt{3})$
- D. $9.8\sqrt{3}$
- E. 19.6

Question 20 A particle moves with constant acceleration. It has an initial velocity of $10\tilde{i}$ m s⁻¹. It has a velocity of $(-5)\tilde{i}$ m s⁻¹ after a displacement of $\tilde{s} = 7.5\tilde{i}$ m. When the velocity is $(-5)\tilde{i}$ m s⁻¹, the total distance (m) travelled by the particle is closest to

A. 7.5

- B. 10.0
- C. 12.5
- D. 15.0
- E. 17.5

Question 21 A particle is in **equilibrium** under the action of three forces \vec{F}_1 , \vec{F}_2 and \vec{F}_3 (see diagram below).

Which one of the following statements is correct?

- A. $|\vec{F}_3|\cos 110^\circ = |F_2|\cos 130^\circ$
- B. $\left| \vec{F}_3 \right| \sin 30^\circ = \left| \vec{F}_2 \right| \sin 20^\circ$
- C. $\left| \vec{F}_3 \right| \cos 30^\circ = \left| \vec{F}_2 \right| \cos 20^\circ$
- D. $\left| \vec{F}_3 \right| \sin 50^\circ = \left| \vec{F}_2 \right| \sin 70^\circ$
- E. $\left| \vec{F}_3 \right| \cos 50^\circ = \left| \vec{F}_2 \right| \cos 70^\circ$

Question 22 A 0.5-kg particle slides *at constant speed* down a rough plane inclined at 42° to the horizontal. The particle exerts a force of *F* newtons on the plane.

The value of F is closest to

- A. 4.9
- B. 3.6
- C. 3.3
- D. 0.5
- E. 0.4

SECTION 2 Extended-answer questions

Instructions for Section 2

Answer all questions.

A decimal approximation will not be accepted if an **exact** answer is required to a question. In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this exam are **not** drawn to scale. Take the **acceleration due to gravity** to have magnitude $g \text{ m s}^{-2}$, where g = 9.8.

Question 1 Consider relations $x^2 + 4y^2 = 4$ and $4\left(x - \frac{3}{2}\right)^2 - 8y^2 = 1$.

a. The graphs of the two relations intersect at some points. Find the exact coordinates of these points.

3 marks

b. Sketch the graphs of the relations on the same axes. Show and label the coordinates of the axis intercepts and intersections, and the asymptotes with equations. 3 marks

									•						
								4	₽ y						
									· ·						
									·····	 	 			·	
								2							
								2	r						
									·····	 	 				
								·····1-	******	 	 			••••••	·····
										 	 			<u>.</u>	
															<i>x</i>
					-	-				 ;	,	-		:	╞──┝
-	4	-	3	-	2	-	1		0	1	2		3		4
-	4	-	3	-	2	-	1		0	1	2		3		4
-	4	-	3	-	2	-	1		0	1	2		3		4
-	4	-	3	-	2	-	1		0	 1	2		3		4
-	4	_	3	-	2	-	1		0	 1	2		3		4
-	4	_	3	-	2	-	1		0	 1	2		3		4
	4	_	3	-	2	-	1		0	1	2		3		4
	4	-	3	-	2	-	1		0	 1	2		3		4
	4	_	3	-	2	-	1		0	1	2		3		4
	4	_	3	-	2	_	1	1-	0	 1	2		3		4
	4	_	3	-	2	-	1	1-	0	 1	2		3		4
	4	_	3	-	2	_	1		0	 1	2		3		4
	4		3	_	2	_	1		0	1	2		3		4
	4	_	3	-	2	-	1		0	1	2		3		4
	4	_	3	-	2	-	1		0	1	2		3		4
	4	_	3	-	2	_	1		0	1	2		3		4
	4	_	3	-	2	_	1	1-	0	1	2		3		4
	4		3	-	2	_	1	1.	0	1	2		3		4
	4		3	-	2	_	1		0	1	2		3		4
	4		3	-	2	_	1	1	0	1	2		3		4

c. Find the equations of the tangents to the graph of $4\left(x-\frac{3}{2}\right)^2 - 8y^2 = 1$ at x = 0.

The region enclosed by the tangents in part c and the curve $4\left(x-\frac{3}{2}\right)^2 - 8y^2 = 1$ is rotated about the *x*-axis by 180°.

d. Find the exact volume of the solid of revolution.

3 marks

Question 2 The volume of water in a tank is given by $V = \frac{5\pi}{6} - \cos^{-1}\left(h - \frac{\sqrt{3}}{2}\right)$ where V is measured in m³ and h in metres is the depth of water in the tank.

a. Find the exact values of the maximum depth and maximum volume of the tank. 2 marks

b. Sketch the graph of $V = \frac{5\pi}{6} - \cos^{-1}\left(h - \frac{\sqrt{3}}{2}\right)$.

Label the axes. Show and label the endpoints and point of inflection with their exact coordinates. 3 marks

At time t = 0 water is pumped into the empty tank at a rate of 50 litres per minute. t is measured in minutes.

Express h in terms of t .	3 marks
	1
Find the exact time in minutes required to fill the tank.	1 mark
Find the rate of increase of the depth when the water in the tank is $\sqrt{3}$ metres deep.	3 marks
	Express <i>h</i> in terms of <i>t</i> .

Question 3 Given unit vector \tilde{i} is in the positive x direction, and unit vector \tilde{j} is in the positive y direction. The position of a motorcyclist is given by $\tilde{r}_c(t) = \left(10 - 100\cos\frac{\pi t}{15}\right)\tilde{i} + \left(160 + 150\sin\frac{\pi t}{15}\right)\tilde{j}$ where time $t \ge 0$ and it is measured in seconds.

a. Find the Cartesian equation of the path of the motorcyclist.

2 marks

b. Find the exact time when the motorcyclist first returns to the position $\tilde{r}_c(0)$.

c. Find the exact maximum speed of the motorcyclist.

1 mark

2 marks

A spectator is at position $\tilde{r}_s = 10\tilde{i} + \frac{40}{3}\tilde{k}$.

d i. Find the exact time when the motorcyclist is first closest to the spectator. 3 marks

d ii. Find the exact value of the closest distance.

1 mark

e. Show that the acceleration of the motorcyclist is $\tilde{a} = k(\tilde{r}_c - \tilde{r}_0)$ where $k \in R$ and $\tilde{r}_0 = 10\tilde{i} + 160\tilde{j}$.

2 marks

Question 4 Consider
$$z - \frac{1}{z}$$
 where $z = x + yi$.
a. Find the real part and the imaginary part of $z - \frac{1}{z}$ in terms of x and y. 2 marks
bi. Find the Cartesian equation of $\left\{z: i 2 \operatorname{Im}(z) = z - \frac{1}{z}\right\}$. 2 marks
bi. Find the Cartesian equation of $\left\{z: i 2 \operatorname{Im}(z) = z - \frac{1}{z}\right\}$. 3 marks
bi. Sketch $\left\{z: \left|i 2 \operatorname{Im}(z) - \left(z - \frac{1}{z}\right)\right| > 0\right\}$. 3 marks
 $\frac{1}{z} + \frac{1}{z} + \frac{1}{z$

c. Find the Cartesian equation of $\left\{z: 2\operatorname{Re}(z) = z + \frac{1}{z}\right\}$.

d. Simplify
$$\left\{z: \left|i 2 \operatorname{Im}(z) - \left(z - \frac{1}{z}\right)\right| > 0\right\} \cap \left\{z: 2\operatorname{Re}(z) = z + \frac{1}{z}\right\}.$$
 1 mark

e. Find the Cartesian equation of
$$\left\{z: 2\operatorname{Re}(z-1-i)=z+\frac{1}{z-1-i}-1-i\right\}$$
. 1 mark

Question 5 A 1-kg particle is projected vertically upwards with a speed of 20 m s⁻¹ at t = 0. Air resistance against its motion is $0.01v^2$ newtons where v is the speed of the particle in m s⁻¹.

a. Draw a diagram showing the forces on the particle while it moves upwards. Label the forces. 1 mark

b. Write an appropriate equation of motion by which the maximum height reached by the particle can be calculated. Let the upward displacement from the point of projection be x metres. 1 mark

c i. Use calculus to solve the equation in part b to show $x = 50 \log_e \left(\frac{13.8}{9.8 + 0.01v^2}\right)$. 3 marks

c ii. Find the maximum height reached by the particle, in metres, correct to 2 decimal places. 1 mark

In the downward motion back to the point of projection, the particle experiences the same air resistance of $0.01v^2$ newtons.

d. Write an appropriate equation by which the speed of the particle after falling x metres can be calculated.

e i. Use calculus to solve the equation in part d to show $v^2 = 980(1 - e^{-\frac{x}{50}})$. 3 marks e ii. Find the speed of the particle when it returns to its point of projection, in metres per second, correct to 2 decimal places. 1 mark Find the time taken for the downward motion of the particle, correct to 2 decimal places. f. 3 marks

1 mark