SPECIALIST MATHEMATICS UNIT 4 SAC 3: INTEGRAL CALCULUS AND APPLICATIONS TEST

NAME: _____

PAPER TWO: Technology Active

Time: 25 MinutesTotal = 18 marks

SECTION A: MULTIPLE CHOICE

Please circle the correct answer.

Question 1

An antiderivative of $\frac{1}{x^2 - 2x + 2}$ is: A. $-(x^2 - 2x + 2)^{-2}$ B. $\log_e(x^2 - 2x + 2)$ C. $\log_e \left| \frac{x - 2}{x + 1} \right|$ D. $\operatorname{arcsec}(x - 1)$ E. $\operatorname{arctan}(x - 1)$

Question 2

A solid is constructed by rotating the function $y = 1 - \cos(2x)$, where $0 \le x \le \frac{\pi}{2}$, about the y-axis. The volume of this solid is:

A.
$$\frac{\pi(\pi^2 - 4)}{4}$$

B. $\frac{-\pi(\pi^2 - 20)}{4}$
C. $\frac{\pi^3}{2}$
D. $\frac{-\pi(\pi^2 - 4\pi - 4)}{4}$
E. $\frac{\pi(\pi^2 + 4)}{4}$

Question 3

The region enclosed by the graph of $y = x^2 + 1$ and he lines y = 1 and y = 4 is rotated about the y-axis to form a solid of revolution. The volume of the solid is given by

A.
$$\pi \int_{0}^{\sqrt{3}} (x^2 + 1) dx$$

B. $\pi \int_{1}^{4} (y - 1) dx$
C. $\pi \int_{1}^{4} (x^2 + 1) dx$
D. $\pi \int_{1}^{4} (y - 1) dy$
E. $\pi \int_{0}^{\sqrt{3}} (y - 1) dy$

Question 4

Using a suitable substitution, $\int_{-\frac{\pi}{6}}^{\frac{\pi}{3}} (\tan(x)\log_e(\sec(x))) dx$ can be expressed completely in terms

of *u* as:

A.
$$\int_{\frac{2}{\sqrt{3}}}^{2} (\log_e(u)) du$$

B.
$$\int_{-\log(\frac{\sqrt{3}}{2})}^{\log_e(2)} (u) du$$

C.
$$-\int_{-\frac{\sqrt{3}}{2}}^{\frac{1}{2}} (u) du$$

D.
$$\int_{-\frac{\pi}{6}}^{\frac{\pi}{3}} (\log_e(u)) du$$

E.
$$\int_{-\frac{\pi}{6}}^{\frac{\pi}{3}} (u) du$$

Question 5

If the substitutions
$$u = \frac{x}{2}$$
 is made, the integral $\int_{2}^{4} \frac{1 - \left(\frac{x}{2}\right)^{2}}{x} dx$ becomes:

- A. $\int_{1}^{2} \frac{1-u^{2}}{u} du$ B. $\int_{2}^{4} \frac{1-u^{2}}{u} du$

C.
$$\int_{1}^{2} \frac{1-u^2}{2u} du$$

$$\mathbf{D.} \qquad \int_{1}^{2} \frac{1-u^2}{4u} du$$

E.
$$\int_{2}^{4} \frac{1-u^2}{2u} du$$

SECTION B: SHORT ANSWER/ANALYSIS

Question 6 (7 marks)

A wine glass is formed by rotating, around the y-axis, the graph defined by function

 $f:[0,2] \rightarrow R, f(x) = \frac{1}{10}(2+5x^3)$. All measurements are in cm.

a) Sketch the graph of f(x) clearly labelling coordinates of endpoints.

2 marks

b) State a definite integral that would find the volume of the glass formed, when full, after it is rotated around the *y*-axis.

2 marks

c) Evaluate this volume, in cubic centimetres.

1 mark

The curve $f:[0,a] \rightarrow R$, $f(x) = \frac{1}{10} (2+5x^3)$ is rotated about the *x*-axis now and the volume of the solid obtained in this way is equal by $\frac{22\pi}{175}$ cubic centimetres.

d) Find the value od *a*.

2 marks

Question 7 (6 marks)

Let *f* be a function defined by $f(x) = x + 2 \cos x$, $x \in [0, 2\pi]$. The diagram below shows a region *S* bound by the graph of *f* and the line y = x.

A and C are the points of intersection of the line y = x and the graph of f, and B is the minimum point of f.

a) If *A*, *B* and *C* have *x*-coordinates $\frac{a\pi}{2}, \frac{b\pi}{2}$ and $\frac{c\pi}{2}$, where $a, b, c \in Z^+$, find the values of *a*, *b* and *c*.

3 marks

b) Write down a definite integral which would find the area of region *S*.

2 marks

c) Hence find the area of the region *S*.

1 mark

END OF PAPER TWO