The Mathematical Association of Victoria

Trial Exam 2015 SPECIALIST MATHEMATICS Written Examination 1

STUDENT NAME

Reading time: 15 minutes Writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of Book

Number of questions	Number of questions to be answered	Number of marks
9	9	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers,
- Students are NOT permitted to bring into the examination room: notes of any kind, a calculator of any type, blank sheets of paper and/or white out liquid/tape.

Materials supplied

• Question and answer book of 13 pages with a detachable sheet of miscellaneous formulas in the centrefold.

Instructions

- Detach the formula sheet from the centre of this book during reading time.
- Write your **name** in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

Question 1 (5 marks)

Consider the polynomial $2z^3 + 9iz^2 + 10z + 7i$ where $z \in C$.

a. Show that 2z + i is a factor of the polynomial.

2 marks

3 marks

b. Hence find the remaining linear factors of the polynomial.

Question 2 (3 marks)

A hyperbola is defined by the relation $2x^2 - y^2 + 4y - 8 = 0$.

a. Find the equations of the asymptotes of the hyperbola.

2 marks

b. *P* is any point on the hyperbola. Let *m* be the gradient of the **normal** to the hyperbola at *P*. Find all possible values of *m*.

1 mark

Question 3 (4 marks)

Consider the function $h: (-\infty, 0) \to R$, $h(x) = \frac{x^3 + 1}{2x^2}$ and let h^{-1} be the **inverse** function of h.

Sketch the graph of $y = h^{-1}(x)$. Label all axes intercepts with their coordinates and all asymptotes with their equation.

Working space

Question 4 (8 marks)

Let $g(x) = 2 \arctan(x)$.

a. Find the area enclosed by the graph of y = g(x), the y-axis and the horizontal line that intersects the graph of y = g(x) at the point where $x = \sqrt{3}$.

4 marks

b. The area in **part a.** is rotated around the *y*-axis. Find the volume of the resulting solid of revolution, expressing your answer in the form $a\pi^2 + b\pi$ where $a, b \in \mathbb{R}$.

4 marks

8

2 marks

2 marks

Ques	stion	5 (7 marks)
Cons	ider 1	the function f with rule $f(x) = \frac{1}{\frac{\pi}{4} - \arccos(2x)}$.
a.	i.	Find the domain of <i>f</i> .
	ii.	Hence or otherwise find the range of <i>f</i> .

b. Find the value of f'(0).

_		

9

Question 6 (4 marks) The vectors $(b - a^2)i + j - bk$ and 2(a - b)i + 4j + 3(a - b)k, where $a, b \in \mathbb{R} \setminus \{0\}$, are parallel. Find the values of a and b.

 \sim

Question 7 (2 marks)

The position vector of a jet relative to the base of a control tower as it approaches the runway is given by

$$\mathbf{r} = (60t - 900)\mathbf{i} + (2800 - 80t)\mathbf{j} + (260 - 8t)\mathbf{k}$$

t seconds after being observed on the control tower radar screen. Let i and j be horizontal

orthogonal unit vectors and let k be a unit vector in the upwards direction. Displacement components \sim are measured in meters. The jet lands at an angle θ to the runway. Find the value of $\tan(\theta)$.

Question 8 (4 marks)

The acceleration, in ms⁻², of a 5 kg mass moving in a straight line is given by $\sqrt{4-v^2}$ where v ms⁻¹ is its velocity. The displacement of the mass from a fixed origin is x metres. If the mass is at rest where

x = 2, calculate the magnitude of the momentum of the mass where $x = \frac{5}{2}$.

Question 9 (3 marks)

A body of mass 2 kg is held by two light inextensible wires in a lift. One wire is attached to the roof of the lift at A and the other to a wall at B. The wire attached to the roof is at an angle 60° to the vertical and the other wire is horizontal. Both wires are made of the same material.

The type of wire used will break if it is subjected to a tension of more than 9g N. Find in terms of g the maximum allowable upwards acceleration of the lift so that neither wire will break.

