THE HEFFERNAN GROUP

P.O. Box 1180 Surrey Hills North VIC 3127 Phone 03 9836 5021 Fax 03 9836 5025 info@theheffernangroup.com.au www.theheffernangroup.com.au Students Name:.....

SPECIALIST MATHEMATICS UNITS 3 & 4

TRIAL EXAMINATION 1

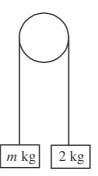
2016

Reading Time: 15 minutes Writing time: 1 hour

Instructions to students

This exam consists of 10 questions. All questions should be answered in the spaces provided. There is a total of 40 marks available. The marks allocated to each of the questions are indicated throughout. Students may **not** bring any notes or calculators into the exam. Where more than one mark is allocated to a question, appropriate working must be shown. An exact answer is required to a question unless otherwise specified. Unless otherwise indicated, diagrams in this exam are not drawn to scale. The acceleration due to gravity should be taken to have magnitude $g \text{ m/s}^2$ where g = 9.8Formula sheets can be found on pages 10-12 of this exam.

This paper has been prepared independently of the Victorian Curriculum and Assessment Authority to provide additional exam preparation for students. Although references have been reproduced with permission of the Victorian Curriculum and Assessment Authority the publication is in no way connected with or endorsed by the Victorian Curriculum and Assessment Authority.


© THE HEFFERNAN GROUP 2016

This Trial Exam is licensed on a non transferable basis to the purchasing school. It may be copied by the school which has purchased it. This license does not permit distribution or copying of this Trial Exam by any other party.

Question 1 (4 marks)

Question 2 (4 marks)

A light inextensible string passes over a smooth pulley with particles of mass m kg and 2 kg attached to the ends of the string as shown.

When released, the acceleration of the 2 kg particle downwards is 1 ms^{-2} .

a. Find the value of *m*, in terms of *g*.

The system is reset and the *m* kg particle is replaced by a 3 kg particle. The acceleration of the 2 kg particle is now $a \text{ ms}^{-2}$ upwards.

b. Find the value of *a*, in terms of *g*.

2 marks

3

Question 3 (3 marks)

Given that $f(x) = \arcsin(3x)$, find $f''\left(\frac{1}{6}\right)$.

Question 4 (3 marks)

Consider the relation $xy^2 + y\log_e(x) - 2y - 3 = 0$, x > 0. Evaluate $\frac{dy}{dx}$ at the point (1, 3).

Question 5 (6 marks)

A company operates a telephone helpline for its clients. The waiting time, in minutes, for clients using the helpline is normally distributed with mean μ .

A random sample is taken of 100 of the company's clients who use the helpline and an approximate 95% confidence interval for μ is $15.02 < \mu < 16.98$.

a.	Find the mean \overline{x} and the standard deviation <i>s</i> for this sample.			
The w advert After those	aiting tin ised mea the upgra suggestec waiting t	apgrades its telephone helpline by outsourcing it to a call centre business. nes, in minutes, for callers to this call centre are normally distributed with an an waiting time of 5.2 minutes and a standard deviation of 1.5 minutes. ade, the company is suspicious that the waiting times on average are longer than d by the advertising. It randomly samples 25 of its clients and finds that the ime is 5.8 minutes. Assume that the population standard deviation remains at		
b.	i.	Write down appropriate null and alternative hypotheses to test whether the mean waiting time is longer than that advertised by the call centre business.	1 mark	
	ii.	Find the <i>p</i> value for this test.	2 marks	
i	ii.	Hence explain whether or not the null hypothesis should be rejected or not rejected at the 5% level of significance.	1 mark	

Question 6 (3 marks) Evaluate $\int_{0}^{\frac{\pi}{4}} \cos^{2}(x)\sin(2x)dx.$

Question 7 (3 marks)

The region in the first quadrant enclosed by the graph with equation $y = \frac{3}{\sqrt{x^2 + 4}}$, the coordinate axes and the line with equation x = 2, is rotated about the *x*-axis to form a solid of revolution.

a. Write down a definite integral that gives the volume of this solid of revolution. 1 mark

b. Find the volume of the solid of revolution.

2 marks

© THE HEFFERNAN GROUP 2016

Question 8 (5 marks)

Consider the three vectors a = 2i + j - 2k, b = i + mj - 4k and c = -i + 3j where $m \in R$.

a.	Find the value of <i>m</i> such that \underline{a} is perpendicular to \underline{b} .	1 mark
		_
		_
		_
b.	Consider the vector \underline{d} which has a magnitude of 6, is parallel to \underline{a} , and runs in the same direction as \underline{a} .	
	Find $d_{\tilde{d}}$.	2 marks
		_
		_
		_
c.	Find a value of <i>m</i> such that a, b and c are linearly dependent .	2 marks
		_
		_
		_
		_
		_

Question 9 (5 marks)

The solution to the differential equation $\frac{dy}{dx} = \frac{x\sqrt{x^2 - 1}}{e^{2y}}$, where y = 0 when x = 1, is given by

 $y = \log_e \sqrt{\frac{a}{b}(x^2 - c)^{\frac{b}{a}} + c}$ where *a*, *b* and *c* are integers. Find the values of *a*, *b* and *c*.

Question 10 (4 marks)

Let
$$f:[0,\infty) \to R$$
, $f(x) = \left| \frac{x-1}{(x+1)(x^2+1)} \right|$.
The graph of *f* is shown below.

y = f(x)

The region enclosed by the graph of f and the x and y axes is shaded. Find the area of this shaded region.

Specialist Mathematics Formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$
curved surface area of a cylinder	2πrh
volume of a cylinder	$\pi r^2 h$
volume of a cone	$\frac{1}{3}\pi r^2 h$
volume of a pyramid	$\frac{1}{3}Ah$
volume of a sphere	$\frac{4}{3}\pi r^3$
area of a triangle	$\frac{1}{2}bc\sin(A)$
sine rule	$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$
cosine rule	$c^2 = a^2 + b^2 - 2ab\cos(C)$

Circular (trigonometric) functions

$\cos^2(x) + \sin^2(x) = 1$	
$1 + \tan^2(x) = \sec^2(x)$	$\cot^2(x) + 1 = \csc^2(x)$
$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$	$\sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y)$
$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$	$\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y)$
$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$	$\tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$
$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$	
$\sin(2x) = 2\sin(x)\cos(x)$	$\tan(2x) = \frac{2\tan(x)}{1-\tan^2(x)}$

Mathematics Formula Sheets reproduced by permission; © VCAA 2016. The VCAA does not endorse or make any warranties regarding this study resource. Current and past VCAA VCE® exams and related content can be accessed directly at www.vcaa.vic.edu.au

Function	sin ⁻¹ (arcsin)	cos ⁻¹ (arccos)	tan ⁻¹ (arctan)	
Domain	[-1, 1] [-1, 1]		R	
Range	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	$[0,\pi]$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	

Circular (trigonometric) functions – continued

Algebra (complex numbers)

$z = x + iy = r(\cos(\theta) + i\sin(\theta)) = r\operatorname{cis}(\theta)$	
$\left z\right = \sqrt{x^2 + y^2} = r$	$-\pi < \operatorname{Arg}(z) \le \pi$
$z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)$	$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$
$z^n = r^n \operatorname{cis}(n\theta)$ (de Moivre's theorem)	

Probability and statistics

for random variables X and Y	E(aX + b) = aE(x) + b E(aX + bY) = aE(x) + bE(Y) $var(aX + b) = a^{2}var(X)$
for independent random variables X and Y	$\operatorname{var}(aX+bY) = a^2 \operatorname{var}(X) + b^2 \operatorname{var}(Y)$
approximate confidence interval for μ	$\left(\overline{x} - z\frac{s}{\sqrt{n}}, \overline{x} + z\frac{s}{\sqrt{n}}\right)$
distribution of sample mean \overline{X}	mean $E(\overline{X}) = \mu$ variance $var(\overline{X}) = \frac{\sigma^2}{n}$

11

Calculus	

Calculus					
$\frac{d}{dx}(x^n) = nx^{n-1} \qquad \qquad \int x^n dx = \frac{1}{n+1}x^{n+1} + c, \ n \neq -1$					
$\frac{d}{dx}(e^{ax}) = ae^{ax}$	$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$				
$\frac{d}{dx} \left(\log_e(x) \right) = \frac{1}{x}$	$\int \frac{1}{x} dx = \log_e x + c$				
$\frac{d}{dx}(\sin(ax)) = a\cos(ax)$	$\int \sin(ax) dx =$	$= -\frac{1}{a}\cos(ax) + c$ $c = -\frac{1}{a}\sin(ax) + c$			
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$					
$\frac{d}{dx}(\tan(ax)) = a\sec^2(ax)$	$\int \sec^2(ax)dx$	$=\frac{1}{a}\tan(ax)+c$			
$\frac{dx}{dx}\left(\sin^{-1}(x)\right) = \frac{1}{\sqrt{1-x^2}}$	$\int \frac{1}{\sqrt{a^2 - x^2}} dx$	$x = \sin^{-1}\left(\frac{x}{a}\right)$	$=\sin^{-1}\left(\frac{x}{a}\right)+c, \ a>0$		
$\frac{d}{dx}\left(\cos^{-1}(x)\right) = \frac{-1}{\sqrt{1-x^2}}$	$\frac{d}{dx}(\cos^{-1}(x)) = \frac{-1}{\sqrt{1-x^2}} \qquad \int \frac{-1}{\sqrt{a^2 - x^2}} dx = \cos^{-1}\left(\frac{x}{a}\right) + c, \ a > 0$				
$\frac{d}{dx}\left(\tan^{-1}(x)\right) = \frac{1}{1+x^2}$	$\int \frac{dx}{dx} dx = \tan^{-1}\left(\frac{x}{a}\right) + c$				
$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c, \ n \neq -1$					
	$\int (ax+b)^{-1} dx = \frac{1}{a} \log_e ax+b + c$				
product rule $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$					
quotient rule	$\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$				
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$			
Euler's method If $\frac{dy}{dx} = f(x)$, $x_0 = a$ and $y_0 = b$, t			$y_0 = b$, then $x_{n+1} = x_n$	$+ h \text{ and } y_{n+1} = y_n + hf(x_n)$	
acceleration	$\frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$				
arc length $\int_{x}^{x_2} \sqrt{1 + (f'(x))^2} dx \text{or} \int_{t}^{t_2} \sqrt{(x'(t))^2 + (y'(t))^2} dt$				lt	
Vectors in two and three dimensions Mechanics					
r = x i + y j + z k			momentum	$\underline{\mathbf{p}} = m \underline{\mathbf{v}}$	
$\left \vec{r} \right = \sqrt{x^2 + y^2 + z^2} = r$			equation of motion	$\mathbf{R} = m\mathbf{a}$	
$\dot{r} = \frac{d r}{dt} = \frac{dx}{dt} = \frac{dx}{dt} = \frac{dy}{dt} = \frac{dy}{dt} = \frac{dz}{dt} = \frac{dz}{dt$	$\dot{r} = \frac{d}{dt} \frac{r}{dt} = \frac{dx}{dt} \frac{i}{z} + \frac{dy}{dt} \frac{j}{z} + \frac{dz}{dt} \frac{k}{z}$				
$r_1 \cdot r_2 = r_1 r_2 \cos(\theta) = x_1 x_2 + y_1 y_2 + z_1 z_2$					