THE HEFFERNAN GROUP

P.O. Box 1180 Surrey Hills North VIC 3127 Phone 03 9836 5021 Fax 03 9836 5025 info@theheffernangroup.com.au www.theheffernangroup.com.au

SPECIALIST MATHS 3 & 4 TRIAL EXAMINATION 2 SOLUTIONS 2016

Section A – Multiple-choice answers							
1.	Е	6.	Е	11.	С	16.	С
2.	D	7.	В	12.	D	17.	А
3.	С	8.	С	13.	E	18.	А
4.	А	9.	D	14.	В	19.	А
5.	D	10.	В	15.	Е	20.	D

Section A - Multiple-choice solutions

Question 1

$$y = \frac{x^2 - 3x - 4}{x^2 - x - 12}$$

= $\frac{(x - 4)(x + 1)}{(x - 4)(x + 3)}$
= $\frac{x + 1}{x + 3}$ provided $x - 4 \neq 0$, so $x \neq 4$
= $1 - \frac{2}{x + 3}$

The graph has an asymptote at x = -3. It has a point of discontinuity at x = 4. It also has an asymptote at y = 1 but this is not offered in the possible answers. The answer is E.

Question 2

For $f(x) = \arccos(3-x)$ to be defined we require $-1 \le 3 - x \le 1$ $-4 \le -x \le -2$ $2 \le x \le 4$ So $d_f = [2,4]$.

The answer is D.

Question 3

$$\frac{2x^2 + 1}{(x^2 - 1)(x^2 + 4)} = \frac{2x^2 + 1}{(x - 1)(x + 1)(x^2 + 4)}$$
$$= \frac{A}{x - 1} + \frac{B}{x + 1} + \frac{Cx + D}{x^2 + 4}$$

The answer is C.

period =
$$\frac{2\pi}{n} = a$$
 (from the graph)
so $n = \frac{2\pi}{a}$

So the coefficient of x must be $\frac{2\pi}{a}$. This eliminates options B, D and E. The graph of $y = \sec\left(\frac{2\pi x}{a}\right)$ has been translated $\frac{a}{4}$ units to the right to obtain the graph shown. $(2\pi x)$

For example, the point (0,1) lies on the graph of $y = \sec\left(\frac{2\pi x}{a}\right)$.

On the graph shown, the point where the function equals 1 is $\left(\frac{a}{4}, 1\right)$. So the rule for the graph

shown must be $y = \sec\left(\frac{2\pi}{a}\left(x - \frac{a}{4}\right)\right)$.

The answer is A.

Question 5

Do a quick sketch. The graph of |z-2-2i| = 2 or |z-(2+2i)| = 2, is the graph of a circle with centre at z = 2+2iand radius of 2 units.

As an example, the graph of $\operatorname{Arg}(z) = \frac{\pi}{4}$ is shown.

If the graph of $\operatorname{Arg}(z) = \theta$ is to intersect with the circle then $0 \le \theta \le \frac{\pi}{2}$.

The answer is D.

Question 6

For
$$z_1 = 1 - \sqrt{3}i$$
,
 $r = \sqrt{1^2 + (-\sqrt{3})^2} = 2$
 $\theta = \tan^{-1}\left(\frac{-\sqrt{3}}{1}\right)$
 $S = -\frac{\pi}{3}$
 $z_1 = 2\operatorname{cis}\left(-\frac{\pi}{3}\right)$
So $(z_1)^{12} = 2^{12}\operatorname{cis}\left(12 \times -\frac{\pi}{3}\right)$ (De Moivre)
 $= 2^{12}\operatorname{cis}(-4\pi)$
So $z_2 = 2^{12}\operatorname{cis}(0)$
So $\operatorname{Arg}(z_1) = 0$ and option A is incorrect.

For option B, $z_2 = 2^{12}(\cos(0) + i\sin(0))$ = $2^{12}(1+0)$ = 2^{12} Im $(z_2) + \operatorname{Re}(z_2) = 0 + 2^{12} > 0$ Option B is incorrect. $|z_2| = 2^{12}$ so option C is incorrect.

 $\operatorname{Re}(z_2) = 2^{12}$ so option D is incorrect.

The answer is E.

$$\int_{1}^{2} (x-3)(2x+1)^{5} dx$$

$$= \int_{3}^{1} \left(\frac{u-7}{2}\right) u^{5} \times \frac{1}{2} \frac{du}{dx} dx$$

$$= \frac{1}{4} \int_{3}^{5} (u-7)u^{5} du$$

$$= \frac{1}{4} \int_{3}^{5} (u^{6} - 7u^{5}) du$$
The answer is B.
Question 8
For $x = 0$, $\frac{dy}{dx} = 0$, so eliminate options A and E.
The slopes $\left(\frac{dy}{dx}\right)$ are influenced by x-values only so eliminate option D (option E has already been eliminated).
We are left with $\frac{dy}{dx} = xe^{x}$ and $\frac{dy}{dx} = xe^{-x}$.
From the direction field, as $x \to \infty$, $\frac{dy}{dx} \to 0$.
For $\frac{dy}{dx} = xe^{x}$, as $x \to \infty$, $\frac{dy}{dx} \to 0$.
For $\frac{dy}{dx} = xe^{-x}$, as $x \to \infty$, $\frac{dy}{dx} \to 0$.
The answer is C.
Question 9
$$\frac{dy}{dx} = \frac{x^{2}}{2} + 2x, \quad h = 0.1, \qquad x_{n+1} = x_{n} + h, \qquad y_{n+1} = y_{n} + hf(x_{n}) \quad (formula sheet)$$
 $x_{0} = 1 \qquad y_{0} = 2$
 $x_{1} = 1.1 \qquad y_{1} = 2 + 0.1(1\frac{x^{2}}{2} + 2)$
 $= 2 + 0.1 \times 3$
 $= 2.3$
 $x_{2} = 1.2 \qquad y_{2} = 2.3 + 0.1(1.\frac{x^{2}}{2} + 2.2)$
 $= 2.63536...$
 $= 2.635 \quad (\text{to 3 decimal places)}$

Question 10

At t = 2, t = 3 and t = 4 the particle changes direction. Between t = 0 and t = 2, the distance travelled by the particle in the same direction, is greater than the distance travelled between t = 2 and t = 3 or between t = 3 and t = 4 or between t = 4 and t = 6. Also the distance travelled between t = 3 and t = 4 is less than the distance travelled between t = 2 and t = 3 or t = 3 and t = 4 is less than the distance travelled between t = 2 and t = 3 so the particle is **not** furthest from its initial position in the t = 3 to t = 4 period. The particle is furthest from its initial position during the time interval (1.5, 2.5). The answer is B.

The vector resolute \underline{a} in the direction of \underline{b} is given by $(\underline{a} \cdot \underline{b}) \underline{b}$.

$$\operatorname{So}\left(\underline{a} \bullet \widehat{\underline{b}}\right) \widehat{\underline{b}} = \left((2\underbrace{i}_{\widetilde{\underline{i}}} + \underbrace{j}_{\widetilde{\underline{i}}} + \underbrace{k}_{\widetilde{\underline{i}}}) \bullet \frac{1}{\sqrt{2}} \left(\underbrace{i}_{\widetilde{\underline{i}}} - \underbrace{k}_{\widetilde{\underline{i}}} \right) \right) \frac{1}{\sqrt{2}} \left(\underbrace{i}_{\widetilde{\underline{i}}} - \underbrace{k}_{\widetilde{\underline{i}}} \right)$$
$$= \frac{1}{2} (2 + 0 - 1) (\underbrace{i}_{\widetilde{\underline{i}}} - \underbrace{k}_{\widetilde{\underline{i}}})$$
$$= \frac{1}{2} (\underbrace{i}_{\widetilde{\underline{i}}} - \underbrace{k}_{\widetilde{\underline{i}}})$$

The answer is C.

Question 12

Start by finding the Cartesian equation of the path. $r = 2\cos(t)$ $v = \sin(t)$

$$\frac{x^{2}}{4} = \cos^{2}(t) \qquad y^{2} = \sin^{2}(t)$$
$$\frac{x^{2}}{4} + y^{2} = \cos^{2}(t) + \sin^{2}(t)$$
$$\frac{x^{2}}{4} + y^{2} = 1$$

The path follows an ellipse with a semi-major axis of 2 and a semi-minor axis of 1. When t = 0, r(t) = 2i + 0j.

The starting point is (2,0).

When
$$t = \frac{3\pi}{2}$$
, $r(t) = 0$ $i - j$.

The finishing point is (0,-1). The graph is shown to the right.

The answer is D.

The vector $-\underline{b} + \underline{a}$, together with vectors

 \underline{a} and \underline{b} form a right angled triangle

since a spans the diameter of the circle.

So
$$(-b+a) \cdot b = 0$$

or $(a-b) \cdot b = 0$

The answer is E.

The angle *PQR* is the angle between \overrightarrow{QP} and \overrightarrow{QR} .

e PQR is the angle between
$$\overrightarrow{QP}$$
 and \overrightarrow{QR} .
 $\overrightarrow{QP} = \overrightarrow{QO} + \overrightarrow{OP}$ $\overrightarrow{QR} = \overrightarrow{QO} + \overrightarrow{OR}$
 $= -2j + k + i + k$ $= -2j + k + i - j - 2k$
 $= i - 2j + 2k$ $= i - 3j - k$

 $\rightarrow R$

$$\vec{QP} \cdot \vec{QR} = 1 + 6 - 2 = 5$$
Also, $\vec{QP} \cdot \vec{QR} = |\vec{QP}| |\vec{QR}| \cos(\angle PQR)$

$$5 = \sqrt{1 + 4 + 4} \sqrt{1 + 9 + 1} \cos(\angle PQR)$$

$$5 = 3\sqrt{11} \cos(\angle PQR)$$

$$\angle PQR = \cos^{-1}\left(\frac{5}{3\sqrt{11}}\right)$$

$$= 59.83321...^{\circ}$$

The closest answer is 59.8°. The answer is B.

Question 15

$$a = \sqrt{v+4} \qquad t = 0, v = -3$$

Since the initial conditions are in terms of the variables t and v, we use $a = \frac{dv}{dt}$ (from the formula sheet).

$$\frac{dv}{dt} = \sqrt{v+4}$$

$$\frac{dt}{dv} = \frac{1}{\sqrt{v+4}}$$

$$t = \int \frac{1}{\sqrt{v+4}} dv$$

$$t = 2\sqrt{v+4} + c$$
When $t = 0, v = -3$

$$0 = 2\sqrt{1} + c$$

$$c = -2$$

$$t = 2\sqrt{v+4} - 2$$

$$\frac{t+2}{2} = \sqrt{v+4}$$

$$v = \frac{(t+2)^2}{4} - 4$$

$$v = \frac{t^2 + 4t - 12}{4}$$
The answer is E.

Question 17

Draw in the forces.

6

An approximate 95% confidence interval is $\left(\overline{x} - 1.96\frac{s}{\sqrt{n}}, \overline{x} + 1.96\frac{s}{\sqrt{n}}\right)$ (formula sheet). In this case, $\overline{x} = 748.6$, s = 2.7 and n = 40. So the interval is given by $\left(748.6 - 1.96\frac{2.7}{\sqrt{40}}, 748.6 + 1.96\frac{2.7}{\sqrt{40}}\right)$ = (747.76..., 749.43...)= (747.8, 749.4) (correct to one decimal place)

The answer is A.

Question 19

Because of the Central Limit Theorem, we can assume that the distribution of the sample mean \overline{X} is approximately normal with

$$E(X) = \mu$$

= 1554
and sd(\overline{X}) = $\frac{\sigma}{\sqrt{n}}$
= $\frac{162}{\sqrt{50}}$
= 22.9102...
Pr($\overline{X} < 1500$) = Pr($Z < \frac{1500 - 1554}{22.9102...}$
= Pr($Z < -2.35702...$)
= 0.009211...

The closest answer is 0.0092. The answer is A.

Question 20

If H_0 is rejected, then this **could** mean that

- a correct decision has been made (if H_0 is not true)
- a type 1 error has been made (if H_0 is true)
- an incorrect decision has been made (if it is a type 1 error)
- H_1 is true (if H_0 is not true).

It **could not** mean that a type 2 error has been made because that occurs when H_0 is not rejected.

The answer is D.

SECTION B

Question 1 (11 marks)

a. A point of inflection occurs if f''(x) = 0 and the sign of the function f'' changes on opposite sides of the point (i.e. there is a change in concavity).

At
$$x = 1$$
, $f''(1) = \frac{-8(1-1)}{\pi(1^2 - 2 + 2)} = 0$ (1 mark)
At $x = 0$, (for example) $f''(0) = \frac{2}{\pi}$
At $x = 2$, (for example) $f''(2) = -\frac{2}{\pi}$

So f''(x) = 0 and the sign of f'' changes on opposite sides of the point of inflection. (1 mark)

d. Looking at the graph, we could draw the line y = x through the points of intersection of f and f^{-1} .

Because of the symmetry of the graphs of f and f^{-1} around the line y = x, we can write $\frac{1}{2}$

$$A = 4 \int_{0}^{0} (f^{-1}(x) - x) dx$$

So $g(x) = x$ (1 mark)

e. <u>Method 1</u> - "hence" $A = 4 \int_{0}^{1} (f^{-1}(x) - x) dx$ = 0.234915... = 0.2 (correct to one decimal place)(1 mark)

 $\underline{\text{Method } 2} - \text{``otherwise''} \\
A = 2 \int_{0}^{1} (f^{-1}(x) - f(x)) dx \quad (1 \text{ mark}) \\
= 0.234915... \\
= 0.2 \text{ (correct to one decimal place)} \quad (1 \text{ mark})$

f. volume =
$$\pi \int_{0}^{1} x^2 dy$$

 $f(x) = 1 + \frac{4}{\pi} \arctan(x-1)$
so let $y = 1 + \frac{4}{\pi} \arctan(x-1)$.

From part **c**. when we were finding f^{-1} , we know that $f^{-1}(x) = 1 + tan\left(\frac{\pi}{4}(x-1)\right)$ So rearranging the rule for *f*, without swapping the *x* and *y*, we get

$$x = 1 + \tan\left(\frac{\pi}{4}(y-1)\right).$$

volume = $\pi \int_{0}^{1} \left(1 + \tan\left(\frac{\pi}{4}(y-1)\right)\right)^{2} dy$ (1 mark)
= 1.2274...
= 1.2 cubic units (correct to one decimal place)

(1 mark)

(1 mark)

Question 2 (10 marks)

i.
$$u = \frac{\sqrt{3}}{2} + \frac{1}{2}i$$

$$r = \sqrt{\left(\frac{\sqrt{3}}{2}\right)^{2} + \left(\frac{1}{2}\right)^{2}} \qquad \theta = \tan^{-1}\left(\frac{1}{2} \div \frac{\sqrt{3}}{2}\right) \qquad \frac{S}{T} \mid \frac{N}{C}$$

$$= \sqrt{\frac{3}{4} + \frac{1}{4}} \qquad = \frac{\pi}{6}$$

$$= 1$$
So $u = \operatorname{cis}\left(\frac{\pi}{6}\right) \qquad (1 \text{ mark}) - \operatorname{correct modulus}$

$$(1 \text{ mark}) - \operatorname{correct argument}$$
ii. Since $u = \operatorname{cis}\left(\frac{\pi}{6}\right)$ is one root of the equation $z^{3} - i = 0$, then we are
effectively finding the cubed roots of *i* so the 3 roots will be spaced $\frac{2\pi}{3}$
apart.
The second root is $\operatorname{cis}\left(\frac{\pi}{6} + \frac{2\pi}{3}\right)$

$$= \operatorname{cis}\left(\frac{5\pi}{3}\right)$$

$$= \operatorname{cis}\left(\frac{5\pi}{6}\right)$$

and the third root is $\operatorname{cis}\left(\frac{5\pi}{6} + \frac{2\pi}{3}\right)$
$$= \operatorname{cis}\left(\frac{9\pi}{6}\right)$$
$$= \operatorname{cis}\left(\frac{3\pi}{2}\right)$$
So $u = \operatorname{cis}\left(\frac{\pi}{6}\right), v = \operatorname{cis}\left(\frac{5\pi}{6}\right)$ and $w = \operatorname{cis}\left(\frac{3\pi}{2}\right)$ because $\operatorname{Im}(w) = -1$.
Im (z)

(1 mark) – correctly showing u and v (1 mark) correctly showing w (1 mark)

iii. See graph above.

 $z^2 + 6i\sin(\alpha)z - 9 = 0$

11

iv.

 $w = \operatorname{cis}\left(\frac{3\pi}{2}\right) = -i$ From part ii., |z-u| = |z-w| $\left|x+iy-\frac{\sqrt{3}}{2}-\frac{1}{2}i\right| = \left|x+iy+i\right|$ $\sqrt{\left(x - \frac{\sqrt{3}}{2}\right)^2 + \left(y - \frac{1}{2}\right)^2} = \sqrt{x^2 + (y + 1)^2}$ $x^{2} - \sqrt{3}x + \frac{3}{4} + y^{2} - y + \frac{1}{4} = x^{2} + y^{2} + 2y + 1$ $-\sqrt{3}x - 3y = 0$ $y = -\frac{x}{\sqrt{2}}$ (1 mark) $v = \operatorname{cis}\left(\frac{5\pi}{6}\right)$ From part **ii.**, $=\cos\left(\frac{5\pi}{6}\right)+i\sin\left(\frac{5\pi}{6}\right)$ $=-\frac{\sqrt{3}}{2}+\frac{1}{2}i$ Show that $\left(-\frac{\sqrt{3}}{2},\frac{1}{2}\right)$ satisfies $y = -\frac{x}{\sqrt{3}}$. LS = y $RS = -\frac{x}{\sqrt{3}}$ $=\frac{1}{2} \qquad \qquad =+\frac{\sqrt{3}}{2} \div \sqrt{3}$ $=\frac{1}{2}$ =LSHave shown.

(1 mark)

We have a quadratic equation in z.

$$z = \frac{-6i\sin(\alpha) \pm \sqrt{-36\sin^{2}(\alpha) + 36}}{2}$$

$$= \frac{-6i\sin(\alpha) \pm 6\sqrt{1 - \sin^{2}(\alpha)}}{2}$$

$$= -3i\sin(\alpha) \pm 3\sqrt{\cos^{2}(\alpha)}$$

$$= -3i\sin(\alpha) \pm 3\cos(\alpha) \qquad (1 \text{ mark})$$

$$z = 3\cos(\alpha) - 3i\sin(\alpha) \text{ or } z = -3\cos(\alpha) - 3i\sin(\alpha)$$

$$= 3(\cos(-\alpha) + i\sin(-\alpha)) \qquad = -3(\cos(\alpha) + i\sin(\alpha))$$
So $z_{1} = 3\operatorname{cis}(-\alpha) \qquad \text{and} \qquad z_{2} = -3\operatorname{cis}(\alpha)$
or vice versa
$$(1 \text{ mark}) \qquad (1 \text{ mark})$$

b.

Question 3 (11 marks)

a. At the point of projection, we have: <u>Horizontal component of velocity</u> $8\cos 30^\circ = 4\sqrt{3}$ <u>Vertical component of velocity</u> $8\sin 30^\circ = 4$ So initial velocity $= 4\sqrt{3}i + 4j$. (1 mark) $\frac{8 \text{ms}^{-1}}{30^{\circ}}$ 4ms⁻¹

b.

$$\ddot{z}(t) = -\frac{t}{50}\dot{z} + \left(\frac{t}{20} - g\right)\dot{z}$$
$$\dot{z}(t) = -\frac{t^2}{100}\dot{z} + \left(\frac{t^2}{40} - gt\right)\dot{z} + \dot{z}_1$$
$$\dot{z}(0) = 4\sqrt{3}\dot{z} + 4\dot{z}$$
 from part a.

So
$$c_1 = 4\sqrt{3} \, \underline{i} + 4 \, \underline{j}$$

 $\dot{r}(t) = \left(4\sqrt{3} - \frac{t^2}{100}\right) \underline{i} + \left(\frac{t^2}{40} - gt + 4\right) \underline{j}$ (1 mark)
 $r(t) = \left(4\sqrt{3}t - \frac{t^3}{300}\right) \underline{i} + \left(\frac{t^3}{120} - \frac{gt^2}{2} + 4t\right) \underline{j} + \underline{c}_2$
 $r(0) = 0 \, \underline{i} + 1.5 \, \underline{j}$ (1 mark)

So
$$c_2 = 0i + 1.5 j$$

 $r(t) = \left(4\sqrt{3}t - \frac{t^3}{300}\right)i + \left(\frac{t^3}{120} - \frac{gt^2}{2} + 4t + 1.5\right)j$ as required (1 mark)

c. The ball hits the ground when
$$\frac{t^3}{120} - \frac{gt^2}{2} + 4t + 1.5 = 0$$

Use CAS to solve this equation for t. (1 mark)
 $t = 1.097341...$
Substitute into $4\sqrt{3}t - \frac{t^3}{300} = 7.59820...$
The ball travels 7.6 m horizontally before hitting the ground (correct to one decimal

The ball travels 7.6 m horizontally before hitting the ground (correct to one decimal place). (1 mark)

d. distance =
$$\int_{0}^{1.097341...} \sqrt{\left(4\sqrt{3} - \frac{t^2}{100}\right)^2 + \left(\frac{t^2}{40} - gt + 4\right)^2} dt$$
 (formula sheet – arc length)

(using the expression for $\dot{r}(t)$ in part b.)(1 mark) – correct integrand

$$= 8.41767...$$
distance = 8.4 metres (correct to one decimal place)
$$(1 \text{ mark}) - \text{correct terminals}$$

$$(1 \text{ mark})$$

e. speed =
$$|\dot{r}(t)| = \sqrt{\left(4\sqrt{3} - \frac{t^2}{100}\right)^2 + \left(\frac{t^2}{40} - gt + 4\right)^2}$$

When the ball bits the ground $t = 1.007241$ from

When the ball hits the ground, t = 1.097341... from part c. (1 mark)

So speed =
$$9.64589...$$

= 9.6 ms^{-1} (correct to one decimal place) (1 mark)

Question 4 (9 marks)

b.

a. Draw the forces.

<u>Around the 4kg particle</u> (parallel to its plane) $T - 4g\sin(2\theta) = 4a$

$$a = \frac{g\sin(\theta)(8\cos(\theta) - 7)}{-11}$$

$$a = \frac{g\sin(\theta)}{11}(7 - 8\cos(\theta))$$
as required
(1 mark)

c. When the system is in equilibrium, a = 0. So solve $0 = \frac{g \sin(\theta)}{11} (7 - 8\cos(\theta))$ for θ (1 mark) $\sin(\theta) = 0$ or $\cos(\theta) = \frac{7}{8}$ $\theta = 0^{\circ}, 180^{\circ}, \dots$ $\theta = 28.9550...^{\circ}$ but $0^{\circ} < \theta < 45^{\circ}$ so $\theta = 29.0^{\circ}$ (correct to one decimal place) (1 mark) d.

Around the (4 + m) kg particle (parallel to its plane) Around the 7 kg particle (parallel to its plane)

$$(4+m)g\sin(60^\circ) - T = (4+m)a$$
$$T = \frac{\sqrt{3}g}{2}(4+m) - (4+m)a$$

 $T - 7g\sin(30^\circ) = 7a$ $T = \frac{7g}{2} + 7a$

Combining these, we have

$$\frac{\sqrt{3g}}{2}(4+m) - (4+m)a = \frac{7g}{2} + 7a$$

$$\frac{\sqrt{3g}}{2}(4+m) - \frac{7g}{2} = 7a + (4+m)a$$

$$\frac{4\sqrt{3g} + \sqrt{3mg} - 7g}{2} = (11+m)a$$

$$a = \frac{g(4\sqrt{3} + \sqrt{3m} - 7)}{2(m+11)}$$
(1 mark)
$$g(11\sqrt{3} - 14)$$

Since
$$a = \frac{g(11\sqrt{3}-14)}{50}$$
, which is given in the question,
we have $\frac{g(11\sqrt{3}-14)}{50} = \frac{g(4\sqrt{3}+\sqrt{3}m-7)}{2(m+11)}$ (1 mark)
Method 1 – use CAS to solve
 $m = \frac{3}{2}$

(1 mark)

$$\frac{\text{Method } 2}{(11\sqrt{3}-14)(m+11)} = 25(4\sqrt{3}+\sqrt{3}m-7)$$

$$11\sqrt{3}m+121\sqrt{3}-14m-154 = 100\sqrt{3}+25\sqrt{3}m-175$$

$$11\sqrt{3}m-14m-25\sqrt{3}m = 100\sqrt{3}-175-121\sqrt{3}+154$$

$$-14m-14\sqrt{3}m = -21\sqrt{3}-21$$

$$-14m(1+\sqrt{3}) = -21(1+\sqrt{3})$$

$$m = \frac{-21(1+\sqrt{3})}{-14(1+\sqrt{3})}$$

$$m = \frac{3}{2}$$

(1 mark)

Question 5 (10 marks)

a.
$$E(4R + 4C) = 4E(R) + 4E(C)$$
 (formula sheet)
 $= 4 \times 2.2 + 4 \times 4.9$
 $= 28.4$
So $E(W) = 28.4$ kg (1 mark)
 $var(4R + 4C) = 4^2 var(R) + 4^2 var(C)$ (formula sheet)
 $= 16 \times 0.18 + 16 \times 0.31$
 $= 7.84$
standard deviation of $W = \sqrt{7.84} = 2.8$ kg (1 mark)

b. $H_0: \mu = 8.6$ (1 mark) $H_1: \mu < 8.6$ (1 mark)

c.
$$E(\overline{X}) = \mu = 8.6$$
, $sd(\overline{X}) = \frac{0.54}{\sqrt{36}} = 0.09$
 $p \text{ value} = \Pr(\overline{X} \le 8.4 | \mu = 8.6)$ (1 mark)
 $= \Pr(Z \le \frac{8.4 - 8.6}{0.09})$
 $= \Pr(Z \le -2.2)$
 $= 0.0131341...$
 $= 0.013 \text{ (correct to three decimal places)}$ (1 mark)

- d. H_0 should be rejected at the 5% level of significance. This is because p < 0.05, that is, 0.013 < 0.05. (1 mark)
- e. If H_0 is not to be rejected at the 1% level then the *p* value for the test must be greater than or equal to 0.01. (1 mark) When $0.01 = \Pr(Z \le c)$, (1 mark) then c = -2.326347... (inverse normal) (1 mark) So the minimum value of the sample mean \overline{x} occurs when $\frac{\overline{x} - 8.6}{0.09} = -2.326347...$ $\overline{x} = 8.390628...$ So $\overline{x} = 8.391$ kg (correct to three decimal places) (1 mark)

Question 6 (9 marks)

a. i. concentration of salt in tank

$$= \frac{\text{amount of salt in tank at time } t}{\text{volume of brine in tank at time } t}$$

$$= \frac{x}{500 + 40t}$$
(1 mark)

Note that every minute there is an increase in the volume of the brine of 60-20 = 40 litres.

ii.
$$\frac{dx}{dt} = \frac{dx_{inflow}}{dl} \cdot \frac{dl_{inflow}}{dt} - \frac{dx_{outflow}}{dl} \cdot \frac{dl_{outflow}}{dt}$$
$$= 0 \times 60 - \frac{x}{500 + 40t} \times 20$$
(1 mark)
$$= \frac{-x}{25 + 2t}$$
So $\frac{dx}{dt} + \frac{x}{25 + 2t} = 0$. (1 mark)

b. Since
$$\frac{dx}{dt} = \frac{-x}{25+2t}$$
,
 $\int -\frac{1}{x}dx = \int \frac{1}{25+2t}dt$ (separation of variables)
 $-\log_e(x) + c_1 = \frac{1}{2}\log_e(25+2t) + c_2$ (since $x > 0, t \ge 0$ we don't need mod signs)
 $\log_e(x) - c_1 = -\frac{1}{2}\log_e(25+2t) - c_2$
 $\log_e(x) = \log_e(25+2t)^{-\frac{1}{2}} + c$ where $c = c_1 - c_2$ (1 mark)
When $t = 0, x = 100$
 $\log_e(100) = \log_e(\frac{1}{\sqrt{25}}) + c$
 $c = \log_e(500)$
So $\log_e(x) = \log_e(\frac{1}{\sqrt{25+2t}}) + \log_e(500)$
 $= \log_e(\frac{500}{\sqrt{25+2t}})$
 $x = \frac{500}{\sqrt{25+2t}}$
So $x(t) = \frac{500}{\sqrt{25+2t}}$ as required. (1 mark)

$$x = \frac{500}{\sqrt{25 + 2t}}$$

= 500(25 + 2t)^{-1/2}
$$\frac{dx}{dt} = -250(25 + 2t)^{-\frac{3}{2}} \times 2$$

= $\frac{-500}{\sqrt{(25 + 2t)^3}}$
So for $\frac{dx}{dt} + \frac{x}{25 + 2t} = 0$,
 $LS = \frac{-500}{(25 + 2t)^{\frac{3}{2}}} + \frac{500}{(25 + 2t)^{\frac{1}{2}}} \times \frac{1}{25 + 2t}$
= 0
= RS
Have verified.

500

(1 mark)

The initial conditions are t = 0, x = 100.

$$x(t) = \frac{500}{\sqrt{25 + 2t}}$$

When $t = 0$,
$$x = \frac{500}{\sqrt{25}}$$
$$= 100$$

Have verified.

(1 mark)

d. Method 1

No salt was added to the tank, only water was added. At t = 0, x = 100g(1 mark) At t = 20, x = 62.0173...gThe amount of salt that flowed out in the first 20 minutes was 37.9826... or 38.0 grams (correct to one decimal place). (1 mark)

outflow =
$$\frac{20x}{500 + 40t}$$
 (from part a. ii.)
= $\frac{x}{25 + 2t}$
Amount of salt flowing out in first 20 minutes
= $\int_{0}^{20} \frac{x}{25 + 2t} dt$ (1 mark)
= $\int_{0}^{20} \frac{1}{25 + 2t} \times \frac{500}{\sqrt{25 + 2t}} dt$
= 37.9826...
= 38.0 grams (correct to one decimal place) (1 mark)