

P.O. Box 1180 Surrey Hills North VIC 3127 Phone 03 9836 5021 Fax 03 9836 5025

info@theheffernangroup.com.au www.theheffernangroup.com.au

Student Name:	
---------------	--

SPECIALIST MATHEMATICS UNITS 3 & 4

TRIAL EXAMINATION 2

2016

Reading Time: 15 minutes Writing time: 2 hours

Instructions to students

This exam consists of Section A and Section B.

Section A consists of 20 multiple-choice questions and should be answered on the detachable answer sheet which can be found on page 27 of this exam.

Section B consists of 6 extended-answer questions.

Section A begins on page 2 of this exam and is worth 20 marks.

Section B begins on page 11 of this exam and is worth 60 marks.

There is a total of 80 marks available.

All questions in Section A and B should be answered.

In Section B, where more than one mark is allocated to a question, appropriate working must be shown.

An exact value is required to a question unless otherwise directed.

Unless otherwise stated, diagrams in this exam are not drawn to scale.

The acceleration due to gravity should be taken to have magnitude $g \text{ m/s}^2$ where g = 9.8

Students may bring one bound reference into the exam.

Students may bring into the exam one approved technology (calculator or software) and, if desired, one scientific calculator. Calculator memory does not need to be cleared. For approved computer-based CAS, full functionality may be used.

A formula sheet can be found on pages 24 - 26 of this exam.

This paper has been prepared independently of the Victorian Curriculum and Assessment Authority to provide additional exam preparation for students. Although references have been reproduced with permission of the Victorian Curriculum and Assessment Authority, the publication is in no way connected with or endorsed by the Victorian Curriculum and Assessment Authority.

© THE HEFFERNAN GROUP 2016

This Trial Exam is licensed on a non transferable basis to the purchasing school. It may be copied by the school which has purchased it. This license does not permit distribution or copying of this Trial Exam by any other party.

SECTION A – Multiple-choice questions

Question 1

The graph of $y = \frac{x^2 - 3x - 4}{x^2 - x - 12}$ will include

- A. asymptotes at x = 1 and x = -3
- **B.** asymptotes at x = 4 and x = -3
- C. an asymptote at x = 1 and a point of discontinuity at x = 2
- **D.** an asymptote at x = 4 and a point of discontinuity at x = -3
- E. an asymptote at x = -3 and a point of discontinuity at x = 4

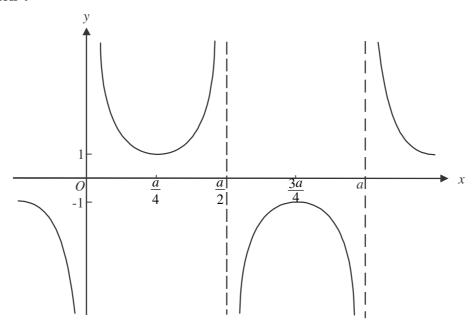
Question 2

The domain of the function $f(x) = \arccos(3-x)$ is

- **A.** [-1, 1]
- **B.** [-4,2]
- \mathbf{C} . [-2,4]
- **D.** [2,4]
- **E.** $(-\infty,2] \cup [4,\infty)$

Question 3

The algebraic function $\frac{2x^2+1}{(x^2-1)(x^2+4)}$ could be expressed as the partial fractions


A.
$$\frac{A}{x-1} + \frac{B}{x+1} + \frac{C}{x+2} + \frac{D}{x-2}$$

B.
$$\frac{A}{x-1} + \frac{B}{(x+1)^2} + \frac{Cx+D}{x^2+4}$$

C.
$$\frac{A}{x-1} + \frac{B}{x+1} + \frac{Cx+D}{x^2+4}$$

D.
$$\frac{A}{x-1} + \frac{B}{x^2-1} + \frac{Cx+D}{x^2+4}$$

E.
$$\frac{Ax^2 + B}{x^2 - 1} + \frac{Cx + D}{x^2 + 4}$$

A rule for the function shown above where a is a positive constant, could be

A.
$$y = \sec\left(\frac{2\pi}{a}\left(x - \frac{a}{4}\right)\right)$$

B.
$$y = \sec\left(\frac{\pi}{a}\left(x - \frac{a}{4}\right)\right)$$

C.
$$y = \sec\left(\frac{2\pi}{a}\left(x + \frac{a}{4}\right)\right)$$

$$\mathbf{D.} \qquad y = \sec\left(\frac{\pi}{a}\left(x + \frac{a}{4}\right)\right)$$

$$\mathbf{E.} \qquad y = \sec\left(\pi\left(x - \frac{a}{2}\right)\right)$$

Question 5

On an Argand diagram, the graphs of the relations |z-2-2i|=2 and $Arg(z)=\theta$ intersect. The maximum possible interval for values of θ is

A.
$$-\pi < \theta \le \pi$$

B.
$$0 \le \theta \le \pi$$

$$\mathbf{C.} \qquad 0 < \theta < \frac{\pi}{2}$$

$$\mathbf{D.} \qquad 0 \le \theta \le \frac{\pi}{2}$$

$$\mathbf{E.} \qquad \frac{-\pi}{2} \le \theta \le \frac{\pi}{2}$$

If
$$z_1 = 1 - \sqrt{3}i$$
 and $z_2 = (z_1)^{12}$ then

A.
$$Arg(z_2) < 0$$

B.
$$Im(z_2) + Re(z_2) < 0$$

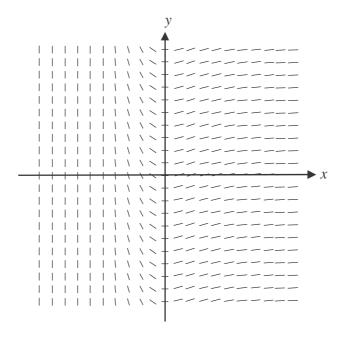
C.
$$|z_2| < 0$$

D.
$$Re(z_2) = 0$$

E.
$$Im(z_2) = 0$$

Question 7

Using a suitable substitution the definite integral $\int_{1}^{2} (x-3)(2x+1)^{5} dx$ is equivalent to


A.
$$\int_{1}^{2} (u^6 - 7u^5) du$$

B.
$$\frac{1}{4} \int_{3}^{5} (u^6 - 7u^5) du$$

C.
$$\frac{1}{4}\int_{1}^{2}(u^{6}-7u^{5})du$$

$$\mathbf{D.} \qquad \frac{1}{2} \int_{3}^{5} (u^6 - 7u^5) du$$

E.
$$\frac{1}{2} \int_{1}^{2} (u^6 - 7u^5) du$$

The differential equation that best represents the direction field shown above is

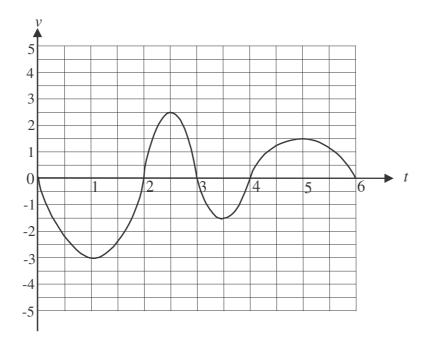
A.
$$\frac{dy}{dx} = e^x$$

B.
$$\frac{dy}{dx} = xe^x$$

$$\mathbf{C.} \qquad \frac{dy}{dx} = xe^{-x}$$

B.
$$\frac{dx}{dy} = xe^{x}$$
C.
$$\frac{dy}{dx} = xe^{-x}$$
D.
$$\frac{dy}{dx} = xye^{x}$$
E.
$$\frac{dy}{dx} = ye^{-x}$$

E.
$$\frac{dy}{dx} = ye^{-x}$$


Question 9

Consider the differential equation $\frac{dy}{dx} = x^{\frac{3}{2}} + 2x$, with $x_0 = 1$ and $y_0 = 2$.

Using Euler's method with a step size of 0.1, the value of y_2 correct to three decimal places

- A. 1.508
- 1.635 B.
- C. 2.300
- 2.635 D.
- E. 3.109

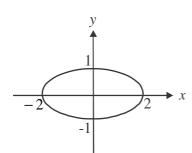
The velocity-time graph for a particle travelling in a straight line is shown below.

The particle is furthest from its initial position during the time interval

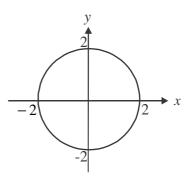
- A. (0.5, 1.5)
- B. (1.5, 2.5)
- C. (3, 4)
- (4.5, 5.5)D.
- E. (5, 6)

Question 11

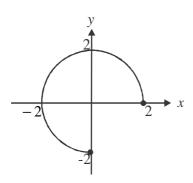
The vector resolute of $\underline{a} = 2\underline{i} + \underline{j} + \underline{k}$ in the direction of $\underline{b} = \underline{i} - \underline{k}$ is

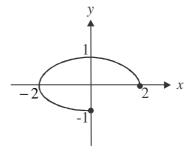

- B.
- $\frac{1}{2}(\underline{i}-\underline{k})$ $\underline{i}-\underline{k}$
- D.
- $\frac{1}{2}(3i+2j+3k)$ E.

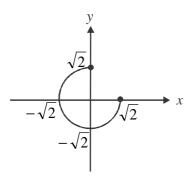
The position vector of a particle at time t seconds is given by

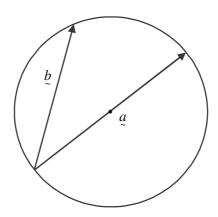

$$r(t) = 2\cos(t) i + \sin(t) j, \quad 0 \le t \le \frac{3\pi}{2}.$$

The path of the particle is shown by


A.


В.


C.


D.

E.

The diagram below shows a circle. The vector \underline{a} passes through the centre of the circle and vectors \underline{a} and \underline{b} meet at the circumference of the circle.

It can definitely be deduced from this diagram that

- **A.** $a \cdot b = 0$
- **B.** $a \cdot b = 1$
- $\mathbf{C.} \qquad \overset{a \bullet a}{\underset{\sim}{a}} = \overset{b \bullet b}{\underset{\sim}{a}}$
- **D.** |a||b|=1
- $\mathbf{E.} \qquad (\underline{a} \underline{b}) \bullet \underline{b} = 0$

Question 14

The position vectors of the points P, Q and R are given respectively by $p = \underline{i} + \underline{k}$, $q = 2\underline{j} - \underline{k}$ and $r = \underline{i} - \underline{j} - 2\underline{k}$.

The angle *PQR* is closest to

- **A.** 6.2°
- **B.** 59.8°
- **C.** 72.5°
- **D.** 123.6°
- **E.** 134.7°

A particle moving in a straight line has acceleration, $a \, \text{ms}^{-2}$, given by $a = \sqrt{v + 4}$, where v is the velocity of the particle in ms^{-1} at time t seconds. Initially the velocity of the particle is $-3 \, \text{ms}^{-1}$.

The velocity of the particle at time t seconds is given by

A.
$$v = \left(\frac{3t}{2}\right)^{\frac{2}{3}} - 4$$

B.
$$v = \left(\frac{3t+2}{2}\right)^{\frac{2}{3}} - 4$$

C.
$$v = e^2 - 4$$

D.
$$v = \frac{t^2 - 8}{2}$$

E.
$$v = \frac{t^2 + 4t - 12}{4}$$

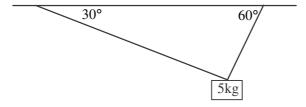
Question 16

An 85 kg man stands in a lift which is accelerating downwards at 1.8 ms⁻². The reaction force, in newtons, of the lift floor on the man is

A. 17

B. 102

C. 680


D. 831.8

E. 935

Question 17

A mass of 5 kg is held in equilibrium by two light strings which are each connected to a horizontal ceiling.

One of the strings makes an angle of 30° with the ceiling and has a tension T_1 newtons. The other string makes an angle of 60° with the ceiling and has a tension of T_2 newtons.

The ratio of T_2 to T_1 is

A. 1: $\frac{1}{\sqrt{3}}$

B. $1:\sqrt{3}$

C. 1:2

D. $1:\sqrt{5}$

E. $1:2\sqrt{5}$

A popular brand of pasta sells its penne in packets labelled as 750 grams.

A random sample of 40 packets of penne have a mean weight of 748.6 grams and a standard deviation of 2.7 grams.

An approximate 95% confidence interval for the population mean μ is closest to

- **A.** $747.8 < \mu < 749.4$
- **B.** $747.9 < \mu < 748.1$
- C. $748.2 < \mu < 749.0$
- **D.** $748.5 < \mu < 751.5$
- **E.** $749.05 < \mu < 750.95$

Question 19

A census found that the mean weekly earnings for adult full time workers in a particular region was \$1554 with a standard deviation of \$162.

A random sample of 50 adult full time workers in this region was taken. The probability that the mean weekly earnings for this group was less than \$1500 is closest to

- **A.** 0.0092
- **B.** 0.0522
- **C.** 0.2389
- **D.** 0.3694
- **E.** 0.4986

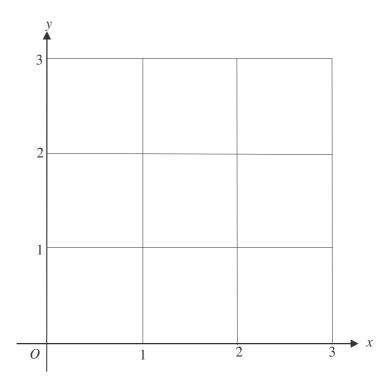
Question 20

A statistical test was conducted involving a null hypothesis H_0 and an alternative hypothesis H_1 . The results of the test indicated that H_0 should be rejected.

Which one of the following statements **could not** be correct?

- **A.** A correct decision has been made.
- **B.** A type 1 error has been made.
- **C.** An incorrect decision has been made.
- **D.** A type 2 error has been made.
- **E.** H_1 is true.

SECTION B


Question 1 (11 marks)

Consider $f:[0,2] \to R$, $f(x) = 1 + \frac{4}{\pi} \arctan(x-1)$.

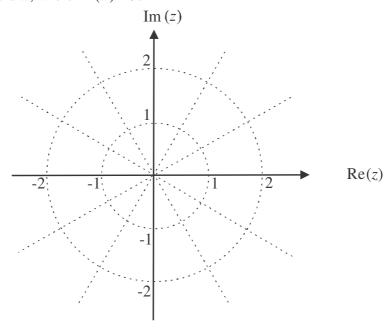
Given that $f''(x) = \frac{-8(x-1)}{\pi(x^2 - 2x + 2)^2}$, show that the graph of f has a point of inflection at x = 1.

2 marks

b. The inverse function of f is f^{-1} . Sketch the graphs of f and f^{-1} on the set of axes below. Indicate clearly endpoints and points of inflection. 2 marks

c.	Given that $f^{-1}(x) = a + \tan\left(\frac{b}{c}(x-a)\right)$, find the values of a , b , and c .	2 marks
		-
		-
Let A	represent the area, in square units, enclosed by the graphs of f and f^{-1} .	
d.	Given that $\int_{0}^{1} (f^{-1}(x) - g(x))dx = \frac{A}{4}$, find the rule for the function g .	1 mark
		-
e.	Hence or otherwise find A. Give your answer correct to one decimal place.	2 marks
		-
		-
f.	The region enclosed by the graph of f , the y -axis, and the line $y = 1$ is rotated about the y -axis to form a solid of revolution. Find the volume of this solid. Give your answer correct to one decimal place.	2 marks
		-

Question 2 (10 marks)


Let
$$u = \frac{\sqrt{3}}{2} + \frac{1}{2}i$$
.

a. i. Express u in polar form.

2 marks

ii. The complex number u is one root of the equation $z^3 - i = 0$. Plot all the roots of this equation on the Argand diagram below labelling them u, v and w, where Im(w) < 0.

2 marks

iii.	Let S	$= \{ z :$	z-u	$ = _{\mathcal{I}}$	w
111.	LCt 5	– [√·	2, u	- 4	" J

Sketch *S* on the Argand diagram above.

1 mark

iv. Show algebraically that v lies on S.

2 marks


b.	Consider the equation $z^2 + 6i\sin(\alpha)z - 9 = 0$, where $z \in C$, α is a real constant and $0 < \alpha < \frac{\pi}{3}$.	
	Find the roots z_1 and z_2 of this equation. Express them in polar form in terms of α .	3 marks
		-
		-
		-
		-

Question 3 (11 marks)

A bowling machine is programmed to project a ball from a height of 1.5 m above the ground at an angle of 30° to the horizontal as shown below. The ball's initial speed is 8 ms^{-1} and it travels in a vertical plane, landing on the ground T seconds later.

On a Cartesian graph, the origin O is located 1.5 m vertically below the point where the ball is projected. Let i represent a unit vector in the positive x direction and let j represent a unit

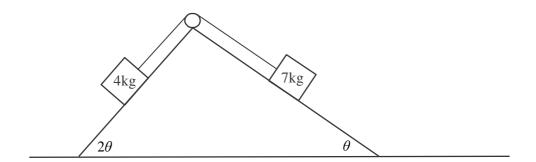
vector in the positive y direction where displacement is measured in metres and time is in seconds.

a.	Show that the ball has an initial velocity when projected of $4\sqrt{3}\underline{i}+4\underline{j}$	1 mark

b.	The acceleration	of the ball	t seconds after	being pro	iected is	given by	ŗ
~•	The accordance	or the cum	i becomes arter	Comp pro	Jeecea 15	51,011,01	

$$\ddot{r}(t) = -\frac{t}{50}\dot{t} + \left(\frac{t}{20} - g\right)\dot{j}, \quad 0 \le t \le T.$$

Show that the position vector of the ball t seconds after being projected by the machine is given by


$\underline{r}(t) = \left(4\sqrt{3}t - \frac{t^3}{300}\right)\underline{i} + \left(\frac{t^3}{120} - \frac{gt^2}{2} + 4t + 1.5\right)\underline{j}, \ 0 \le t \le T$	3 mark
	,
How far does the ball travel horizontally before it hits the ground? Give your answer	
in metres correct to 1 decimal place.	2 mark

c.

per second, when it hits the ground. Give your

Question 4 (9 marks)

Particles of mass 4 kg and 7 kg are shown on adjoining smooth planes in the diagram below. The planes are inclined to the horizontal at angles of 2θ and θ respectively where $0^{\circ} < \theta < 45^{\circ}$. A light inextensible string passes over a smooth pulley and connects the two particles. The tension in the string is T newtons. The 7 kg mass accelerates down the plane at a ms⁻².

a.	Find an equation for the motion of the 4 kg particle up the plane.	1 mark

Hence show that the acceleration of the 7 kg mass down the other plane is given by	
$a = \frac{g\sin(\theta)}{11}(7 - 8\cos(\theta)).$	3 ma

c.	Find the angle θ when the system is in equilibrium. Give your answer correct to one decimal place.

2 marks

Suppose θ is fixed at 30° and a mass of m kg is added to the 4 kg mass. The 7 kg mass now accelerates up the plane with an acceleration of $\frac{g(11\sqrt{3}-14)}{50} \text{ms}^{-2}$.

Find the value of m .	

Question 5 (10 marks)

A tyre manufacturer produces thirteen inch car tyres using rubber and other components. The random variable *R* represents the weight, in kg, of rubber in one of these tyres.

The random variable C represents the weight, in kg, of the other components in one of these tyres.

Both variables are independent and are normally distributed with mean and variance as shown in the table below.

random variable	mean (μ)	variance (σ^2)
R	2.2	0.18
С	4.9	0.31

Let the random variable W represent four times the weight of one of these thirteen inch car tyres.

		2
•	The manufacturer also produces fifteen inch car tyres. The distribution of the weights of tyres is normal and it is claimed by the manufacturer that $\mu = 8.6 \mathrm{kg}$.	
hese t	tyres is normal and it is claimed by the manufacturer that $\mu = 8.6 \mathrm{kg}$. oring organization tests these claims by taking a random sample of 36 tyres. It finds	
hese the motor of	tyres is normal and it is claimed by the manufacturer that $\mu = 8.6 \mathrm{kg}$. For oring organization tests these claims by taking a random sample of 36 tyres. It finds ean weight for the sample to be $\bar{x} = 8.4 \mathrm{kg}$ and the standard deviation to be $s = 0.54 \mathrm{kg}$.	
hese to A mot he me	tyres is normal and it is claimed by the manufacturer that $\mu = 8.6 \mathrm{kg}$. oring organization tests these claims by taking a random sample of 36 tyres. It finds can weight for the sample to be $\bar{x} = 8.4 \mathrm{kg}$ and the standard deviation to be $s = 0.54 \mathrm{kg}$. this sample data it checks the manufacturer's claims that $\mu = 8.6 \mathrm{kg}$ by conducting a	
hese to A mother mediates the mediates the desired the mediates the desired th	tyres is normal and it is claimed by the manufacturer that $\mu = 8.6 \mathrm{kg}$. For oring organization tests these claims by taking a random sample of 36 tyres. It finds ean weight for the sample to be $\bar{x} = 8.4 \mathrm{kg}$ and the standard deviation to be $s = 0.54 \mathrm{kg}$. this sample data it checks the manufacturer's claims that $\mu = 8.6 \mathrm{kg}$ by conducting a ical test.	
hese to the median desired the m	tyres is normal and it is claimed by the manufacturer that $\mu = 8.6 \mathrm{kg}$. For original original tests these claims by taking a random sample of 36 tyres. It finds that weight for the sample to be $\bar{x} = 8.4 \mathrm{kg}$ and the standard deviation to be $s = 0.54 \mathrm{kg}$. This sample data it checks the manufacturer's claims that $\mu = 8.6 \mathrm{kg}$ by conducting a dical test. Summed that the population standard deviation (σ) of these tyre weights can be	
these to A mot the me Using statistics as	tyres is normal and it is claimed by the manufacturer that $\mu = 8.6 \mathrm{kg}$. For oring organization tests these claims by taking a random sample of 36 tyres. It finds ean weight for the sample to be $\bar{x} = 8.4 \mathrm{kg}$ and the standard deviation to be $s = 0.54 \mathrm{kg}$. this sample data it checks the manufacturer's claims that $\mu = 8.6 \mathrm{kg}$ by conducting a ical test.	
hese to the median desired the m	tyres is normal and it is claimed by the manufacturer that $\mu = 8.6 \mathrm{kg}$. For original original tests these claims by taking a random sample of 36 tyres. It finds that weight for the sample to be $\bar{x} = 8.4 \mathrm{kg}$ and the standard deviation to be $s = 0.54 \mathrm{kg}$. This sample data it checks the manufacturer's claims that $\mu = 8.6 \mathrm{kg}$ by conducting a dical test. Summed that the population standard deviation (σ) of these tyre weights can be	2

nal 2 mark
e a 1 mark
could
aces. 3 marks

Question 6 (9 marks)

A tank initially contains 500 litres of brine which is a solution of water and salt. There is 100 grams of salt in the tank initially.

Water is pumped into the tank at the rate of 60 litres per minute and brine is pumped out of the tank at the rate of 20 litres per minute.

The amount of salt in the tank t minutes after the pumping begins is x grams. The solution in the tank is kept uniform by constant stirring.

a.	i.	Write down an expression for the concentration of salt in the tank, in grams per litre, in terms of x and t .	1 mark
	ii.	Show that the differential equation which represents the rate of change of x with respect to t is given by $\frac{dx}{dt} + \frac{x}{25 + 2t} = 0$.	2 marks
b.	Show t	that $x(t) = \frac{500}{\sqrt{25 + 2t}}$.	2 marks

Verify by substitution and the initial conditions			$ai 23 \pm 2i$	2 :
with minute of the				2
Find the amount of	salt that flowed out of t	he tank in the first	twenty minutes af	
Find the amount of the pumping began.	salt that flowed out of t	he tank in the first grams correct to one	twenty minutes after decimal place.	
Find the amount of the pumping began.	salt that flowed out of t . Give your answer in g	he tank in the first grams correct to one	twenty minutes af e decimal place.	
Find the amount of the pumping began.	salt that flowed out of to. Give your answer in g	he tank in the first grams correct to one	twenty minutes afte decimal place.	
Find the amount of the pumping began.	salt that flowed out of to. Give your answer in g	he tank in the first grams correct to one	twenty minutes after decimal place.	
Find the amount of the pumping began.	salt that flowed out of t . Give your answer in g	he tank in the first grams correct to one	twenty minutes afte decimal place.	
Find the amount of the pumping began.	salt that flowed out of t . Give your answer in g	he tank in the first grams correct to one	twenty minutes afte decimal place.	
Find the amount of the pumping began.	salt that flowed out of to. Give your answer in g	he tank in the first grams correct to one	twenty minutes after decimal place.	
Find the amount of the pumping began.	salt that flowed out of t	he tank in the first grams correct to on	twenty minutes after decimal place.	
Find the amount of the pumping began.	salt that flowed out of to the control of the contr	he tank in the first grams correct to one	twenty minutes afte decimal place.	
Find the amount of the pumping began.	salt that flowed out of t	he tank in the first grams correct to one	twenty minutes after decimal place.	
Find the amount of the pumping began.	salt that flowed out of t	he tank in the first grams correct to one	twenty minutes after decimal place.	ter 2 1

Specialist Mathematics Formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$
curved surface area of a cylinder	2πrh
volume of a cylinder	$\pi r^2 h$
volume of a cone	$\frac{1}{3}\pi r^2 h$
volume of a pyramid	$\frac{1}{3}Ah$
volume of a sphere	$\frac{4}{3}\pi r^3$
area of a triangle	$\frac{1}{2}bc\sin(A)$
sine rule	$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$
cosine rule	$c^2 = a^2 + b^2 - 2ab\cos(C)$

Circular (trigonometric) functions

$\cos^2(x) + \sin^2(x) = 1$	
$1 + \tan^2(x) = \sec^2(x)$	$\cot^2(x) + 1 = \csc^2(x)$
$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$	$\sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y)$
$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$	$\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y)$
$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$	$\tan(x - y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$
$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$	
$\sin(2x) = 2\sin(x)\cos(x)$	$\tan(2x) = \frac{2\tan(x)}{1-\tan^2(x)}$

Mathematics Formula Sheets reproduced by permission; © VCAA 2016. The VCAA does not endorse or make any warranties regarding this study resource. Current and past VCAA VCE® exams and related content can be accessed directly at www.vcaa.vic.edu.au

Circular (trigonometric) functions – continued

Function	sin ⁻¹ (arcsin)	cos ⁻¹ (arccos)	tan ⁻¹ (arctan)
Domain	[-1, 1]	[-1, 1]	R
Range	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	$[0,\pi]$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

Algebra (complex numbers)

$z = x + iy = r(\cos(\theta) + i\sin(\theta)) = r\operatorname{cis}(\theta)$	
$ z = \sqrt{x^2 + y^2} = r$	$-\pi < \operatorname{Arg}(z) \le \pi$
$z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)$	$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$
$z^n = r^n \operatorname{cis}(n\theta)$ (de Moivre's theorem)	

Probability and statistics

for random variables X and Y	$E(aX + b) = aE(x) + b$ $E(aX + bY) = aE(x) + bE(Y)$ $var(aX + b) = a^{2}var(X)$
for independent random variables X and Y	$\operatorname{var}(aX + bY) = a^{2}\operatorname{var}(X) + b^{2}\operatorname{var}(Y)$
approximate confidence interval for μ	$\left(\overline{x} - z \frac{s}{\sqrt{n}}, \overline{x} + z \frac{s}{\sqrt{n}}\right)$
distribution of sample mean \overline{X}	mean $E(\overline{X}) = \mu$ variance $var(\overline{X}) = \frac{\sigma^2}{n}$

Calculus

Calculus	
$\frac{d}{dx}\left(x^{n}\right) = nx^{n-1}$	$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$
$\frac{d}{dx}(e^{ax}) = ae^{ax}$	$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, n \neq -1$ $\int e^{ax} dx = \frac{1}{a} e^{ax} + c$
$\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$	$\int \frac{1}{x} dx = \log_e x + c$
$\frac{d}{dx}(\sin(ax)) = a\cos(ax)$	$\int \sin(ax) dx = -\frac{1}{a} \cos(ax) + c$ $\int \cos(ax) dx = \frac{1}{a} \sin(ax) + c$
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$	$\int \cos(ax) dx = \frac{1}{a} \sin(ax) + c$
$\frac{d}{dx}(\tan(ax)) = a\sec^2(ax)$	$\int \sec^2(ax) dx = \frac{1}{a} \tan(ax) + c$
$\frac{d}{dx}\left(\sin^{-1}(x)\right) = \frac{1}{\sqrt{1-x^2}}$	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) + c, \ a > 0$
$\frac{d}{dx}\left(\cos^{-1}(x)\right) = \frac{-1}{\sqrt{1-x^2}}$	$\int \frac{-1}{\sqrt{a^2 - x^2}} dx = \cos^{-1} \left(\frac{x}{a} \right) + c, \ a > 0$
$\frac{d}{dx}\left(\tan^{-1}(x)\right) = \frac{1}{1+x^2}$	$\int \frac{a}{a^2 + x^2} dx = \tan^{-1} \left(\frac{x}{a} \right) + c$
	$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c, \ n \neq -1$
	$\int (ax+b)^{-1} dx = \frac{1}{a} \log_e ax+b + c$
product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$
quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$
Euler's method	If $\frac{dy}{dx} = f(x)$, $x_0 = a$ and $y_0 = b$, then $x_{n+1} = x_n + h$ and $y_{n+1} = y_n + hf(x_n)$
acceleration	$a = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$
arc length	$\int_{x_1}^{x_2} \sqrt{1 + (f'(x))^2} dx \text{or} \int_{t_1}^{t_2} \sqrt{(x'(t))^2 + (y'(t))^2} dt$

Vectors in two and three dimensions

r = x i + y j + z k
$ \underline{r} = \sqrt{x^2 + y^2 + z^2} = r$
$\dot{r} = \frac{d r}{dt} = \frac{dx}{dt} i + \frac{dy}{dt} j + \frac{dz}{dt} k$
$ r_1 \cdot r_2 = r_1 r_2 \cos(\theta) = x_1 x_2 + y_1 y_2 + z_1 z_2 $

Mechanics

momentum	$ \tilde{\mathbf{p}} = m \tilde{\mathbf{v}} $
equation of motion	$\mathbf{R} = m\mathbf{a}$

SPECIALIST MATHS

TRIAL EXAMINATION 2

MULTIPLE - CHOICE ANSWER SHEET

STUDENT NAME:										
INSTRUCTIONS										
Fill in th	ne lette	er that	corres	ponds to your choice. Examp	ole: A		\bigcirc	D	E	
The answer selected is B. Only one answer should be selected.										
1. A	В	\mathbb{C}	\bigcirc	Œ	11. A	В	$\overline{\mathbb{C}}$	\bigcirc	Œ	
2. A	B	\bigcirc	D	E	12. A			D	E	
3. A	B	\bigcirc	D	E	13. A	B	\bigcirc	D	E	
4. A	B	\bigcirc	D	E	14. A	B	\bigcirc	D	E	
5. A	B	\mathbb{C}	D	E	15. A	B	\bigcirc	\bigcirc	E	
6. A	B	\bigcirc	D	E	16. A	B	\bigcirc	D	E	
7. A	B	\bigcirc	D	Œ	17. A	B	\bigcirc	D	E	
8. A	B	\bigcirc	D	E	18. A	B	\mathbb{C}	\bigcirc	E	
9. A	B	\bigcirc	D	E	19. A	B	\mathbb{C}	D	E	
0. A	B	\mathbb{C}	\bigcirc	E	20. A	B	\mathbb{C}	\bigcirc	(\mathbf{E})	