The Mathematical Association of Victoria

Trial Exam 2016 SPECIALIST MATHEMATICS Written Examination 1

STUDENT NAME _____

Reading time: 15 minutes Writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of Book

Number of questions	Number of questions to be answered	Number of marks
9	9	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 15 pages
- Formula sheet
- Working space is provided throughout the book.

Instructions

- Write your **name** in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

Instructions

3

Answer **all** questions in the space provided. Unless otherwise specified, an **exact** answer is required to a question. In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams are **not** drawn to scale. Take the acceleration due to gravity to have magnitude g ms⁻², where g = 9.8

Question 1 (3 marks)

An emergency rescue worker with a mass of 70 kg is training in a wind tunnel. He is hanging from the

roof of the wind tunnel by a rope and a light wind exerts a force of magnitude $\frac{g}{3}$ newtons on him.

Calculate the magnitude in newtons of the tension in the rope. Give your answer in the form $\frac{g\sqrt{a}}{b}$ where *a* and *b* are positive integers.

1 mark

Question 2 (5 marks)

The vector $a = -i - 2\sqrt{3} j - \sqrt{2} k$, where i, j and k are unit vectors in the positive directions of the *x*, *y* and *z* axes respectively.

a. Find the vector of length $\sqrt{45}$ in the direction of a.

b. The vector $\underset{\sim}{\mathbf{b}} = 2 \underset{\sim}{\mathbf{i}} - m \underset{\sim}{\mathbf{j}} - 3\sqrt{2} \underset{\sim}{\mathbf{k}}$ where $m \in \mathbb{R}$. Find all possible values of m if:

i.	$b_{\sim} = 5.$	2 marks
		_
		_
		_
		_
		_
		_
		_
		_

ii. b is perpendicular to a .

Question 3 (3 marks)

Solve $z^3 - (2-i)z^2 = z - 2 + i$ where $z \in C$.

6

© The Mathematical Association of Victoria, 2016

7

Question 4 (3 marks)

Solve
$$\frac{dy}{dx} = \frac{y-1}{x+1}$$
 for y, given that $y = \frac{1}{2}$ when $x = -2$.

Question 5 (4 marks)

The velocity $v \text{ ms}^{-1}$ of a body moving in a straight line in terms of its position x m is given by the relation $2v^2 - 3vx - 2x^2 = 1$ for $x \ge 0$.

Find the acceleration of the body when $x = \frac{1}{5}$ and v > 0.

Question 6 (5 marks)

The position of a particle at time *t* seconds is given by $\underset{\sim}{\mathbf{r}} = t^2 \underset{\sim}{\mathbf{i}} + \frac{4t^2}{5} \sqrt{t} \underset{\sim}{\mathbf{j}}, t \ge 0$, where components are measured in metres.

a. Find the velocity of the particle when it has an acceleration of 2i + 2j ms⁻².

b. Find the distance travelled by the particle in the first 3 seconds of its moti
--

Question 7 (5 marks)

Galaxian Highscore and Max Hardcase regularly run a distance of 5 km as part of a fitness program. The time it takes Galaxian to run 5 km is normally distributed with a mean of 31 minutes and a standard deviation of 3 minutes. The time it takes Max to run 5 km is normally distributed with a mean of 33 minutes and a standard deviation of 4 minutes. The times run by Galaxian and Max are independent.

Let the random variable *X* represent the time it takes Galaxian to run 5 km and let the random variable *Y* represent the time it takes Max to run 5 km.

a. Find the standard deviation of the difference between the times it takes Max and Galaxian to run 5 km.

2 marks

Max Hardcase decides to try and decrease his running times by also doing some high intensity interval training. Max finds that for his next 25 runs over 5 km, the mean time is 31 minutes. Assume that the standard deviation of 4 minutes is unchanged.

b. i. State appropriate null and alternative hypotheses for the running time *T* of Max in this situation.

1 mark

ii. The *p*-value for this test is given by the expression $Pr(Z \le a | H_0)$, where Z has the standard normal distribution.

Find the value of *a* and **hence** determine whether or not the null hypothesis should be rejected at the 0.05 level of significance.

2 marks

TURN OVER

© The Mathematical Association of Victoria, 2016

The region enclosed by the graph with equation $y = \frac{\sqrt{2x-1}}{x-1}$ and the lines y = 0 and $x = \frac{3}{4}$ is rotated about the *x*-axis to form a solid of revolution. Calculate the volume of the solid of revolution.

Question 9 (9 marks)

Consider the functions with rules $f(x) = \frac{x^2 + 1}{2x^2 - 1}$ and $g(x) = \pi - \cos^{-1}(x)$ where each function is defined over its maximal domain.

a. State the equations of all asymptotes of f(x).

1 mark

b. Sketch a graph of y = f(x). Label all asymptotes with their equation and all stationary points with their coordinates.

Working space

© The Mathematical Association of Victoria, 2016

Hence find the implied domain of $g(f(x))$.	3 1
Find the implied range of $g(f(x))$.	2 1

END OF QUESTION AND ANSWER BOOK