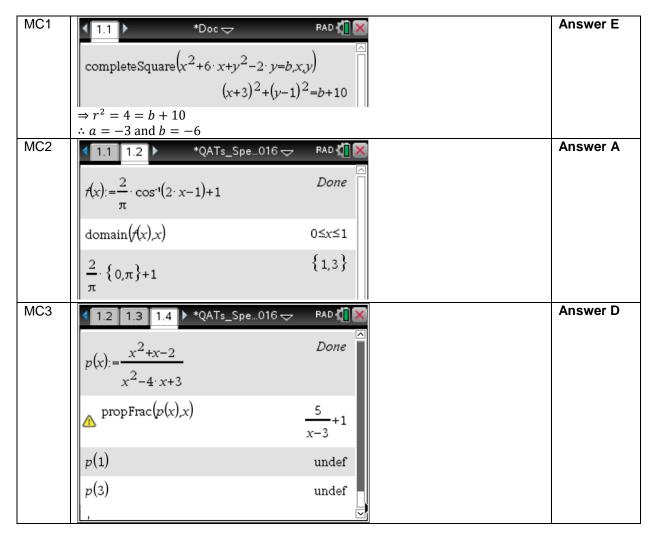
Solution Pathway

Below are sample answers. Please consider the merit of alternative responses.

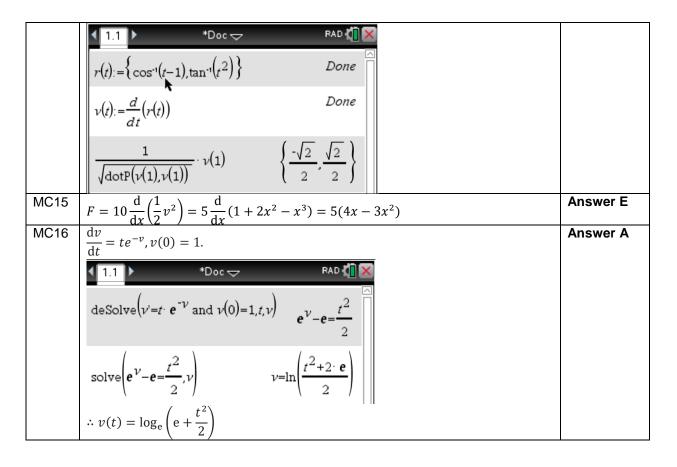
Section A: Multiple-choice Answers

1.	E	6.	E	11.	C	16.	A
2.	A	7.	A	12.	E	17.	D
3.	D	8.	В	13.	D	18.	D
4.	C	9.	В	14.	C	19.	A
5.	В	10.	D	15.	E	20.	E

Section A: Multiple-choice Solutions



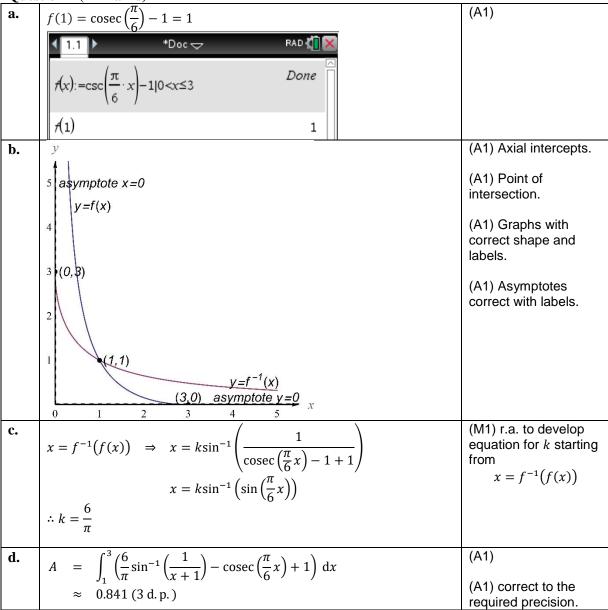
MC4		Answer C
IVIO	expand $\frac{3 \cdot x + 1}{2 \cdot x + 1}$ $\frac{-19 \cdot x}{2 \cdot x + 1}$ $\frac{103}{2 \cdot x + 1}$ $\frac{19}{2 \cdot x + 1}$ $\frac{5}{2 \cdot x + 1}$	Allower
	$= \operatorname{expand}\left(\frac{3 \cdot x + 1}{(x+2)^2 \cdot (x^2 + 9)}\right) \qquad \frac{-19 \cdot x}{169 \cdot (x^2 + 9)} + \frac{103}{169 \cdot (x^2 + 9)} + \frac{19}{169 \cdot (x^2 + 9)} - \frac{5}{13 \cdot (x+2)^2}\right)$	
MC5	$ z-c = r \Rightarrow z-c ^2 = r^2 \Rightarrow (z-c)\overline{(z-c)} = r^2 \Rightarrow (z-c)(\overline{z}-\overline{c}) = r^2$	Answer B
MC6	For a polynomial with real coefficients, it follows by the conjugate root theorem,	Answer E
	that complex roots must occurs in conjugate pairs, so will always be even in	
MC7	number. The solution (i.e. integral curve) of the differential equation is independent of	Answer A
IVIO7	the y –coordinate, and look like a cosine with period π .	Allower A
	Therefore $y = A \cos(2x)$ with $A > 0$.	
MC8	▼ 1.1 1.2 ★ *Doc ⇒ RAD (X	Answer B
	1.5 y	
	$\mathbf{f1}(x) = (\cos(x))^3$	
	X.	
	0.2 2· π	
	-1.5	
	$4\int_{0}^{\frac{\pi}{2}}\cos^{3}(x) dx = 4\int_{0}^{\frac{\pi}{2}}(1-\sin^{2}(x))\cos(x) dx$	
	$\int_0^{\pi} \cos(x) dx = \int_0^{\pi} (1 - \sin(x)) \cos(x) dx$	
	$=4\int_{0}^{\sin(\frac{\pi}{2})} (1-u^2) du = 4\int_{0}^{1} (1-u^2) du$	
	$\int_{\sin(0)}^{\infty} (-1)^{2n} dx$	
MC9	$=4\int_{\sin(0)}^{\sin(\frac{\pi}{2})} (1-u^2) du = 4\int_0^1 (1-u^2) du$ $V = \pi \int_0^{\cos^{-1}(1)} (x(y))^2 dy = \pi \int_0^{\cos^{-1}(1)} \left(\frac{\cos(y)}{3}\right)^2 dy = \frac{\pi}{18} \int_0^{\frac{\pi}{2}} (1+\cos(2y)) dy$	Answer B
11010	$(x,y) = x \int_0^1 (x,y) dy = x \int_0^1 (x+y) dy$	
MC10 MC11	$y_1 = y_0 + hf(x_0) = 1 + h(\sec(0)) = 1 + h$	Answer D Answer C
IVICTI	$(\hat{b} \cdot \hat{a})\hat{a}$ is not necessarily parallel to $(\hat{a} \cdot \hat{b})\hat{b}$ so they would not necessarily be	Allswei
MC12	equal.	Answer E
IVICIZ	1.4 1.5 1.6 ➤ *QATs_Spe016 ⇒ RAD (1) ×	VIISMAI E
	$a := \begin{bmatrix} 1 & 1 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 2 \end{bmatrix}$	
	b:=[2 1 -2]	
	dotP(a,b)	
	$\sqrt{\operatorname{dotP}(b,b)}$ 3	
MC13	$\left \underbrace{\mathbf{a}}_{\mathbf{a}} + \underbrace{\mathbf{b}}_{\mathbf{a}} \right ^{2} - \left \underbrace{\mathbf{a}}_{\mathbf{a}} - \underbrace{\mathbf{b}}_{\mathbf{a}} \right ^{2} = \left(\underbrace{\mathbf{a}}_{\mathbf{a}} + \underbrace{\mathbf{b}}_{\mathbf{a}} \right) \cdot \left(\underbrace{\mathbf{a}}_{\mathbf{a}} + \underbrace{\mathbf{b}}_{\mathbf{a}} \right) - \left(\underbrace{\mathbf{a}}_{\mathbf{a}} - \underbrace{\mathbf{b}}_{\mathbf{a}} \right) \cdot \left(\underbrace{\mathbf{a}}_{\mathbf{a}} - \underbrace{\mathbf{b}}_{\mathbf{a}} \right)$	Answer D
	$= \left(a \cdot a + 2a \cdot b + b \cdot b \right) - \left(a \cdot a - 2a \cdot b + b \cdot b \right)$	
	$= 4a \cdot b$	
MC14	Direction is $\frac{1}{ \dot{\mathbf{r}}(1) } \dot{\dot{\mathbf{r}}}(1)$	Answer C
©2016	f(1) ~`´	Ser3SMF2

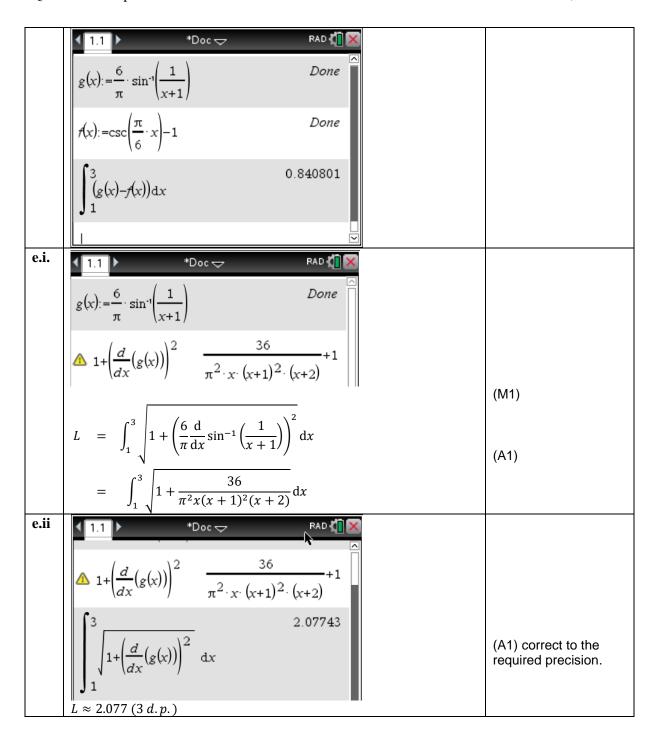


MC17	$2T\sin(60^\circ) = 6g \Rightarrow T = 2\sqrt{3}g$	Answer D
MC18	$E(5X - 3Y) = 5E(X) - 3E(Y) = 5 \times 12 - 3 \times 4 = 48$	Answer D
	$Var(5X - 3Y) = 5^{2}Var(X) + (-3)^{2}Var(Y) = 25 \times 9 + 9 \times 4 = 261$	
	$\sigma = \sqrt{\text{Var}(5X - 3Y)} = 3\sqrt{29}$	
MC19	$\bar{X} \sim N\left(\mu = 30, \sigma = \frac{7}{5}\right)$	Answer A
	$\Pr(\bar{X} > 34) = \Pr(Z > \frac{20}{7}) = 1 - \Pr(Z < \frac{20}{7}) \approx 0.0021$	
	1.1 ► *Doc RAD 1 ×	
	$1-\operatorname{normCdf}\left(-\infty,\frac{20}{7},0,1\right) \qquad 0.002137 $	
MC20	An error of the second type is a "false negative", accepting the null hypothesis	Answer E
	when this hypothesis is incorrect.	

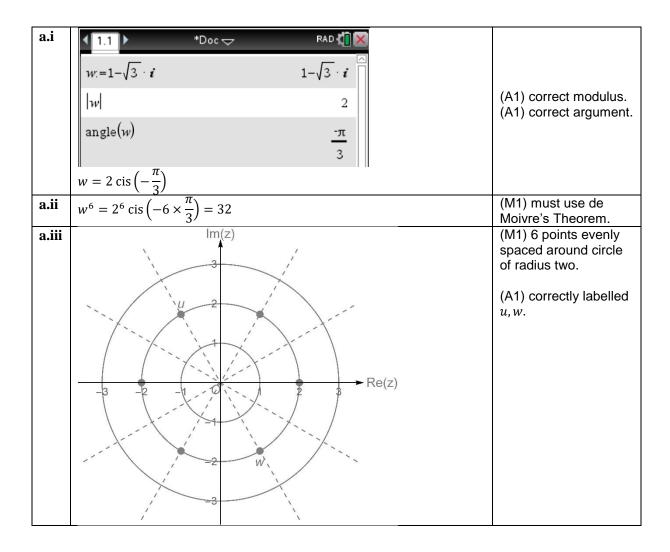
Section B: Extended Answer Solutions

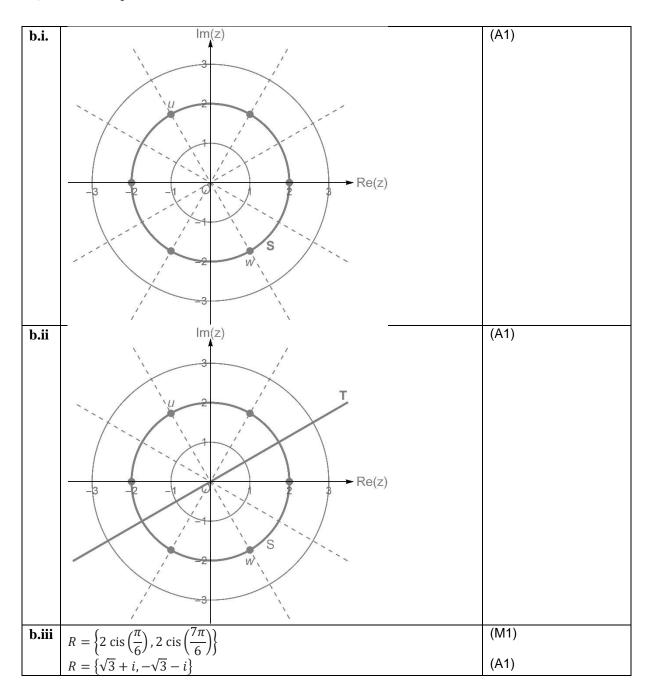
Question 1 (11 marks)





Question 2 (9 marks)





Question 3 (11 marks)

a.	$\int \frac{-1}{y(m - \log_{e}(y))} dy =$	$= \int \frac{1}{(m - \log_e(y))} \frac{d}{dy} (m - \log_e(y)) dy$	(M1) identify du.
	$= \frac{\int y(m - \log_{e}(y))}{1}$	$\int \frac{1}{u} du \text{ with } u = m - \log_e(y)$	(A1) integral w.r.t. u.
	=	$\log_{\mathrm{e}}(m - \log_{\mathrm{e}}(y))$	

b.	$\int \frac{-1}{N(8 - \log_e(N))} dN = -\int 2 dt$ (using $m = 8$ in result from part a .)	(M1) separate variables.
	$\log_{e}(8 - \log_{e}(N)) = -2t + C$ $8 - \log_{e}(N) = e^{C}e^{-2t} \text{ (because } 8 - \log_{e}(N) > 0)$	(M1) use result from part a.
	$(t,N) = (0,e^{2}) \Rightarrow 6 = e^{C}$ $\therefore \log_{e}(N) = 8 - 6e^{-2t}$ $\lim_{t \to \infty} (8 - 6e^{-2t}) = 8$	(M1) impose I.C.
c.	$\lim_{t \to \infty} (8 - 6e^{-2t}) = 8$	(A1)
d.	$\frac{d}{dt}\left(\frac{dN}{dt}\right) = \frac{d}{dN}\left(3N\left(8 - \log_e(N)\right)\right)\frac{dN}{dt}$	(M1) r.a. chain rule.
	$\frac{d^2N}{dt^2} = 3(7 - \log_e(N))\frac{dN}{dt}$	(M1) substitute for $\frac{dN}{dt}$
	$\frac{d^2N}{dt^2} = 9N(7 - \log_e(N))(8 - \log_e(N))$	
e.	$\frac{dN}{dt}$ is max $\Rightarrow \frac{d^2N}{dt^2} = 0$ and $\frac{dN}{dt} \neq 0$	(M1)
	$(7 - \log_e(N)) = 0 \Rightarrow N = e^7$	(A1)
f.	$8 - 6e^{-2t} = 7 \Rightarrow t = \frac{\log_e(6)}{2} \text{ days}$	(A1)

Question 4 (10 marks)

a.	$\dot{\mathbf{r}}(t) = -\mathbf{g}t\mathbf{j} + \mathbf{c}$	(M1) r.a to
	$\dot{r}(0) = 45i + 0j \Rightarrow \dot{c} = 45i + 0j$	antidifferentiate twice. (M1) r.a to employ
	$\underset{\sim}{\mathbf{r}}(t) = -\frac{1}{2}\mathbf{g}t^{2}\mathbf{j} + 45t\mathbf{i} + \mathbf{d}$	initial conditions to determine constants
	$r(t) = 0i + 0j \Rightarrow d = 0i + 0j$	of antidifferentiation. (A1)
	$\therefore r(t) = -\frac{1}{2}gt^2j + 45ti$,
b.	$ \int_{-\infty}^{\infty} \frac{\mathbf{r}(T)}{\mathbf{r}} = -h \Rightarrow -\frac{1}{2}gT^2 = -490 $	(M1)
	$T = \sqrt{\frac{980}{g}} = 10 \text{ seconds since } T > 0.$	(M1)
c.	r(T) = 450i - 490j	(M1)
	$\theta = \arctan\left(\frac{49}{45}\right)$	(A1)
d.	$\dot{r}(10) = 45 i_{\sim} - 10 g j_{\sim}$	(M1) seen or used.
	speed = $\left 45i - 10gj\right $	
	$= \sqrt{45^2 + 980^2}$	(A1)
	$\approx 981\text{m/s}$ Ignoring air resistance results in unrealistically large speed at splash down.	(R1)

Question 5 (10 marks)

a.	Mg - mg = (M + m)a	(M1) or equivalent force balance.
	$a = \frac{M - m}{M + m}g$	(A1)
b.	$Mg - T_1 = Ma$	(M1) or equivalent force balance.
	$T_1 = \frac{2gmM}{m+M}$	(A1)
c.	$-Mg\sin(c^{\circ}) + mg = (M+m)b$	(M1) or equivalent force balance.
	$b = \frac{m - M\sin(c^{\circ})}{M + m}g$	(A1)
d	$Mg\sin(d^{\circ}) - mg = (M+m)b$	(M1) or equivalent force balance.
	$b = \frac{M\sin(d^\circ) - m}{M + m} g$	(A1)
e	$\frac{m - M\sin(c^{\circ})}{M + m}g = \frac{M\sin(d^{\circ}) - m}{M + m}g$	(M1) equating expressions for b.
	$\frac{m}{M} = \frac{\sin(c^{\circ}) + \sin(d^{\circ})}{2}$	(A1)

Question 6 (9 marks)

a.	$H_0: \mu = 30$	(A1)
	$H_1: \mu > 30$	(A1)
b.	$\bar{X} \sim N(\mu = 30, \sigma = 2)$	(M1)
	$p = \Pr(\bar{X} \ge 32 \mu = 30) = \Pr(Z \ge 1)$	(A1)
c.	\approx 0.159 (3 d.p.) $p > 0.05 \Rightarrow$ do not reject H_0	(A1)
d.	$\bar{X} \sim N(\mu = 30, \sigma = 2)$	()
	$\Pr\left(Z < 1.6449 = \frac{C^* - 30}{2}\right) = 0.95$	(M1)
	2) 555	(A1)
	$C^* = 30 + 2 \times 1.6449 = 33.290 (3 d.p.)$	(XII)
e.i.	$\bar{X} \sim N(\mu = 32, \sigma = 2)$	
	$\Pr(\bar{X} \le 33.290 \mid \mu = 32) = \Pr\left(Z \le \frac{33.290 - 32}{2} \mid \mu = 32\right)$	(A1)
	$\approx 0.741 (3 \text{ d.p.})$	
e.ii.	$\Pr(\bar{X} \leq 33.290 \mid \mu = 32)$ is the probability of rejecting H_1 when it is	(A1) must have
	indeed correct, so it is a Type II error.	reason.