SPECIALIST MATHEMATICS

Units 3 and 4 – Written Examination 2

2016 Trial Examination

SOLUTIONS

SECTION 1: Multiple-choice questions (1 mark each)

Question 1

Answer: C

Explanation:

By CAS we get

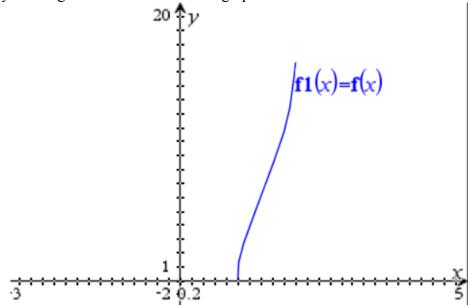
$$\operatorname{propFrac}\left(\frac{-2 \cdot x^{4} + x^{3} - 2 \cdot x^{2} + 5 \cdot x - 1}{x^{3} + x - 2}\right) \qquad \frac{1}{x^{3} + x - 2}$$
Let $x^{3} + x - 2 = 0$. Then $x^{3} + x - 2 = (x - 1)(x^{2} + x + 2) = 0 \Rightarrow x = 1$.
Therefore the function has asymptotes $y = -2x + 1$ and $x = 1$.

Question 2

Answer: E

Explanation Finding the domain: $-1 \le 3 - 2x \le 1 \Rightarrow 1 \le x \le 2$ The range of 3 + x is [4, 5] and the range of $\arccos(3 - 2x)$ is $[0, \pi]$. Hence the range of f(x) is $[0, 5\pi]$.

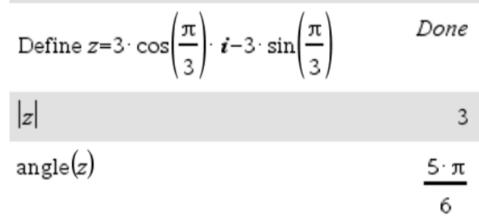
Alternatively the range can be found from the graph in CAS



Question 3

Answer: A

Explanation: Results can be found from CAS



Question 4

Answer: C

Explanation:

 z_1, z_2 and z_3 are the roots of the polynomial $P(z) = z^3 + bz^2 + cz + d \Rightarrow$ $P(z) = (z - z_1)(z - z_2)(z - z_3) = z^3 - (z_1 + z_2 + z_3)z + (z_1z_2 + z_2z_3 + z_3z_1)z - z_1z_2z_3 \Rightarrow$ $z_1z_2 + z_2z_3 + z_3z_1 = c, \ z_1z_2z_3 = -d$

Question 5

Answer: D

Explanation:

 $(5+5i)^n - (2\sqrt{3}+6i)^n = (5\sqrt{2})^n cis(\frac{n\pi}{4}) - (4\sqrt{3})^n cis(\frac{n\pi}{3})$ is a positive number \Rightarrow Both $\frac{n\pi}{4}$ and $\frac{n\pi}{3}$ must be even multiple of $\pi \Rightarrow$ n is a multiple of 24. Hence D is the correct answer.

Question 6

Answer: B

Explanation:

Differentiate both sides of the equation $9x^2 + 25y^2 = 225$: $18x + 50yy' = 0 \Rightarrow y' = -\frac{9x}{25y}$ When x = 4, $y = \pm \frac{9}{5}$. $\therefore y' = -\frac{9x}{25y} = \pm \frac{4}{5}$ Hence the product of the gradients is $-\frac{16}{25}$.

Question 7

Answer: E

Explanation:

$$A = \frac{1}{2}bh, \frac{db}{dt} = 1 \text{ cm/min}, \quad \frac{dh}{dt} = -2 \text{ cm/min} \Rightarrow$$

$$\frac{dA}{dt} = \frac{1}{2}\left(\frac{db}{dt}h + b\frac{dh}{dt}\right) = \frac{1}{2}(1 \times h + b \times (-2)) = \frac{1}{2}(18 - 10) = 4 \text{ cm}^2/\text{min}$$

Question 8

Answer: D

Explanation:

Let
$$u = \cos(x)$$
. Then $dx = -\frac{du}{\sin(x)}$. When $x = \frac{\pi}{6}$, $u = \frac{\sqrt{3}}{2}$; $x = \frac{\pi}{2}$, $u = 0$

$$\therefore \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\sin(x)}{\cos^2(x) + 4\cos(x) + 3} dx = -\int_{\frac{\sqrt{3}}{2}}^{0} \frac{1}{u^2 + 4u + 3} dx = -\frac{1}{2} \int_{\frac{\sqrt{3}}{2}}^{0} \left(\frac{1}{u+1} - \frac{1}{u+3}\right) dx = \frac{1}{2} \int_{0}^{\frac{\sqrt{3}}{2}} \left(\frac{1}{u+1} - \frac{1}{u+3}\right) dx$$

Question 9

Answer: C

Explanation: Using CAS

$$\frac{3}{2}$$
Define $f(x) = (x-2)^{\frac{3}{2}}$
Define $df(x) = \frac{d}{dx}(f(x))$

$$Done$$

$$\int_{-3}^{10} \sqrt{1 + (df(x))^2} dx$$

$$22.803$$

Question 10

Answer: C

Explanation: Using CAS

$$deSolve(y''-7\cdot y'+10=0,x,y)$$

$$y=c2\cdot e^{-7\cdot x} + \frac{10\cdot x}{7} + c1 + \frac{10}{49}$$

$$deSolve(y''+6\cdot y'+9=0,x,y)$$

$$y=c3\cdot e^{-6\cdot x} + c4 - \frac{3\cdot x}{2} + \frac{1}{4}$$

$$deSolve(y''-7\cdot y'+10\cdot y=0,x,y)$$

$$y=c6\cdot e^{-5\cdot x} + c5\cdot e^{-2\cdot x}$$

Question 11

Answer: A

Explanation: Formula: $y_{i+1} = y_i + h \times y'_i$, h = 0.5

i	x _i	y'_i	y _i
0	1	-4	3
1	1.5	2	$3 + 0.5 \times (-4) = 1$
2	2		$1 + 0.5 \times 2 = 2$

Question 12

Answer: A

Explanation:

A useful mathematical model for setting up differential equations of dynamic systems

$$\frac{dx}{dt} = R_{in} \times C_{in} - R_{out} \times C_{out}$$

where R_{in} and R_{out} are the flowing in and flowing out rate; C_{in} and C_{out} are the concentrations of the solutions which are flowing in and flowing out respectively. Therefore

$$\frac{dx}{dt} = 6 \times 20 - 8 \times \frac{x}{60 + (8 - 6)t} = 120 - \frac{4x}{30 + t}$$

Question 13

Answer: E

Explanation:

Look at the slope field in CAS for each of the differential equations.

Question 14

Answer: E

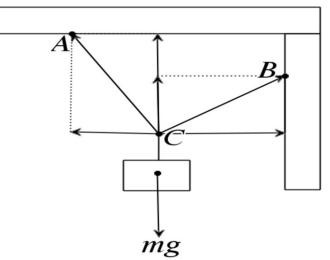
Explanation: Using CAS

Define $v = \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix}$	Done
Define $u = \begin{bmatrix} 3 \\ 1 \\ 6 \end{bmatrix}$	Done
Define $vh=unitV(v)$	Done
$u - \operatorname{dotP}(u, vh) \cdot vh$	$ \begin{bmatrix} -21 \\ 29 \\ -52 \\ 29 \\ 120 \\ 29 \end{bmatrix} $

Question 15

Answer: A

Explanation:



All forces acting on the block and their components in the horizontal and vertical directions are

labelled in the in the diagram. The motion equations are $F_{AC} \cos(30^{\circ}) + F_{BC} \cos(60^{\circ}) = mg, \ F_{AC} \sin(30^{\circ}) = F_{BC} \sin(60^{\circ})$ Solving by CAS

$$F_{AC} = \frac{\sqrt{3}}{2}mg$$
, $F_{BC} = \frac{1}{2}mg$

Question 16

Answer: A

Explanation:

Substitute s = 0, u = 29.4, a = -9.8 into $s = ut + \frac{1}{2}at^2$ solve for t, t = 0, 6

Question 17

Answer: B

Explanation:

$$\frac{dx}{dv} = \frac{dx}{dt} \times \frac{dt}{dv} = \frac{v}{v \times sec^2(2v)} = \cos^2(2v) \Rightarrow$$

$$x\left(\frac{\pi}{12}\right) - x(0) = \int_0^{\frac{\pi}{12}} \cos^2(2v) \, dv \Rightarrow x\left(\frac{\pi}{12}\right) = \int_0^{\frac{\pi}{12}} \cos^2(2v) \, dv + 5$$

Question 18

Answer: D

Explanation: Let X_1 and X_2 be the scores of the assignment and the test. Then $E(X_1) = 85, std(X_1) = 10, E(X_2) = 62, std(X_2) = 8$ Therefore $E(0.4X_1 + 0.6X_2) = 0.4E(X_1) + 0.6E(X_2) = 0.4 \times 85 + 0.6 \times 62 = 71.2$

$$std(0.4X_1 + 0.6X_2) = \sqrt{(0.4std(X_1))^2 + (0.6std(X_2))^2} = 6.2482$$

Question 19

Answer: C

Explanation: Using CAS

zInterval 1.5,3.2,200,0.95: stat.results	"Title"	"z Interval"
	"CLower"	2.99211
	"CUpper"	3.40789
	" X "	3.2
	"ME"	0.207886
	"n"	200.
	"σ"	1.5

Question 20

Answer: C

Explanation:

zTest 2,0.1,1.95,20,-1: stat.results	"Title"	"z Test"
	"Alternate Hyp"	"μ < μ0"
	"z"	-2.23607
	"PVal"	0.012674
	" x "	1.95
	"n"	20.
	"σ"	0.1

SECTION 2: Extended Response questions

Question 1 (9 marks)

a.

i. Let $X_1, X_2, X_3, X_4, X_5, X_6$ be the study scores of English, Specialist Maths, Maths Methods, Chemistry, Physics and LOTE. Let X be the aggregate score. Then

$$X = X_1 + X_2 + X_3 + X_4 + 0.1X_5 + 0.1X_6$$

Therefore
$$E(X) = E(X_1) + E(X_2) + E(X_3) + E(X_4) + 0.1E(X_5) + 0.1E(X_6)$$

$$= 32.1 + 42.6 + 37.8 + 35.5 + 0.1 \times 34.1 + 0.1 \times 35$$

$$= 154.91$$

1 mark

ii.

$$sta(X) = \sqrt{(std(X_1))^2 + (std(X_2))^2 + (std(X_3))^2 + (std(X_4))^2 + (0.1std(X_5))^2 + (0.1std(X_6))^2} = \sqrt{7.1^2 + 8.6^2 + 7.6^2 + 8^2 + (0.1 \times 8.4)^2 + (0.1 \times 9)^2}$$

$$= \sqrt{15.74}$$
1 mark

b.
$$E(\bar{X}) = E(X) = 154.91$$

 $std(\bar{X}) = \frac{std(X)}{\sqrt{n}} = \frac{15.74}{\sqrt{30}} = 2.87$

c. i. Using CAS for a z-test

zTest 154.91, 15.74, 160, 30, 1: stat.results

"Title"	"z Test"
"Alternate Hyp"	''μ > μ0''
"z"	1.77122
"PVal"	0.038262
"X"	160.
"n"	30.
"σ"	15.74

1 mark

1 mark

1 mark

Therefore the required p-value is 0.0383.

ii. Since the p –value is less than 0.05, there is sufficient evidence to conclude that the students in this specific area perform better in those subjects.

1 mark

1 mark

Question 2 (12 marks)

a. The determinant of the component matrix of vectors \overrightarrow{OA} , \overrightarrow{OC} and \overrightarrow{OG}

$$det \begin{pmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 3 & 2 & -2 \\ 0 & 3 & 2 \end{bmatrix} = 35 \neq 0.$$
 1 mark
Therefore $\overrightarrow{OA}, \overrightarrow{OC}$ and \overrightarrow{OG} are linearly independent. 1 mark

Alternatively, let

$$x\overrightarrow{OA}$$
, $+y\overrightarrow{OC} + z\overrightarrow{OG} = 0$

Then

$$\begin{cases} 2x + 3y = 0 \\ \{-x + 2y + 3z = 0 \\ x - 2y + 2k = 0 \end{cases}$$
Solve by CAS, getting the unique solution $x = 0, y = 0$ and $z = 0$.
Hence $\overrightarrow{OA}, \overrightarrow{OC}$ and \overrightarrow{OG} are linearly independent. 1 mark
b. Let (x, y, z) be the coordinates of B.
 $OABC$ is a parallelogram \Rightarrow
 $\overrightarrow{OC} = \overrightarrow{AB} = (x - 2)i + (y + 1)j + (z - 1)k = 3i + 2j - 2k \Rightarrow$ 1 mark
 $x = 5, y = 1, z = -1$. 1 mark
c. i. Let $\theta = \angle AOC$. Then $\cos(\theta) = \frac{\overrightarrow{OA} \cdot \overrightarrow{OC}}{|\overrightarrow{OA}||\overrightarrow{OC}|} = \frac{2}{\sqrt{6\times 17}} = \frac{2}{\sqrt{102}}$ 1 mark
Therefore $\sin(\theta) = \sqrt{1 - (\frac{2}{\sqrt{102}})^2} = \frac{7}{\sqrt{51}}$ 1 mark
ii. The area of the parallelogram $OABC$
 $Area = |\overrightarrow{OA}|| \overrightarrow{OC}|\sin(\theta) = \sqrt{102} \times \frac{7}{\sqrt{51}} = 7\sqrt{2}$. 1 mark
d. $n \cdot \overrightarrow{OA} = (j + k) \cdot (2i - j + k) = -1 + 1 = 0$ 1 mark
 $n \cdot \overrightarrow{OC} = (j + k) \cdot (3i + 2j - 2k) = 2 - 2 = 0$ 1 mark
Therefore n is perpendicular to vectors \overrightarrow{OA} and \overrightarrow{OC} .

e. The height of the parallelepiped *OABCGDEF* is the magnitude of the resolute of the vector \overrightarrow{OG} in the direction of n. 1 mark

Therefore

$$h = \left| \overrightarrow{OG} \cdot \hat{n} \right| = \left(3j + 2k \right) \cdot \frac{1}{\sqrt{2}} \left(j + k \right) = \frac{5}{\sqrt{2}}$$
 1 mark

f. The volume
$$V = 7\sqrt{2} \times \frac{5}{\sqrt{2}} = 35$$
 1 mark

Question 3 (12 marks) a. i. $32\left(-\frac{1}{2}\right)^5 + 1 = -1 + 1 = 0 \Rightarrow z = -\frac{1}{2}$ is a solution of the equation $32z^5 + 1 = 0$ 1 mark ii. $32z^5 + 1 = 0 \Rightarrow z^5 = \frac{1}{32}cis(\pi) \Rightarrow$ $z = \frac{1}{2}cis\left(\frac{\pi}{5}\right), \frac{1}{2}cis\left(\frac{\pi}{5} + \frac{2\pi}{5}\right), \frac{1}{2}cis\left(\frac{\pi}{5} - \frac{2\pi}{5}\right), \frac{1}{2}cis\left(\frac{\pi}{5} + \frac{4\pi}{5}\right), \frac{1}{2}cis\left(\frac{\pi}{5} - \frac{4\pi}{5}\right)$ $\Rightarrow z = \frac{1}{2}cis\left(\frac{\pi}{5}\right), \frac{1}{2}cis\left(\frac{3\pi}{5}\right), \frac{1}{2}cis\left(-\frac{\pi}{5}\right), \frac{1}{2}cis(\pi), \frac{1}{2}cis\left(-\frac{3\pi}{5}\right).$ 2 marks b.

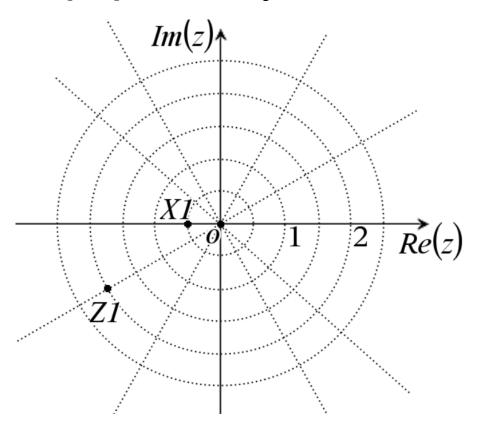
$$i. P\left(-\frac{1}{2}\right) = \frac{1}{2} - \frac{1}{2}\left(1 + 2\sqrt{3} + 2i\right) + m + i = 0 \Rightarrow 1 \text{ mark}$$

$$\frac{1}{2} - \frac{1}{2} - \sqrt{3} - i + m + i = 0 \Rightarrow m = \sqrt{3} 1 \text{ mark}$$

$$ii. P(z) = 2z^{2} + (1 + 2\sqrt{3} + 2i)z + \sqrt{3} + i = (2z + 1)[z + (\sqrt{3} + i)] 1 \text{ mark}$$

$$\therefore z = -(\sqrt{3} + i) 1 \text{ mark}$$

c. The positions of X_1 and Z_1 are labelled in the diagram below.



1 mark for each point

d. Note that any complex number can be written as a vector. Let α be the angle between Z_1X_1 and the positive direction of the real axis. Let β be the angle between Z_1O and the positive direction of the real axis. Then $\theta = \alpha - \beta$.

$$\overrightarrow{Z_1 O} = \sqrt{3} \underbrace{i}_{\sim} + \underbrace{j}_{\sim} \Rightarrow \tan(\beta) = \frac{1}{\sqrt{3}}$$
1 mark
$$\overrightarrow{Z_1 X_1} = \overrightarrow{O X_1} - \overrightarrow{O Z_1} = -\frac{1}{2} \underbrace{i}_{\sim} + \left(\sqrt{3} \underbrace{i}_{\sim} + \underbrace{j}_{\sim}\right) = \left(\sqrt{3} - \frac{1}{2}\right) \underbrace{i}_{\sim} + \underbrace{j}_{\sim}$$

$$\Rightarrow \tan(\alpha) = \frac{1}{\sqrt{3} - \frac{1}{2}} = \frac{4\sqrt{3} + 2}{11}$$
1 mark
Therefore

Therefore

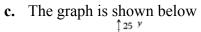
$$\tan(\theta) = \frac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)}$$
$$= \frac{\frac{4\sqrt{3} + 2}{11} - \frac{1}{\sqrt{3}}}{1 + \frac{4\sqrt{3} + 2}{11} \times \frac{1}{\sqrt{3}}}$$
$$= \frac{8 + \sqrt{3}}{61}$$
 1 mark

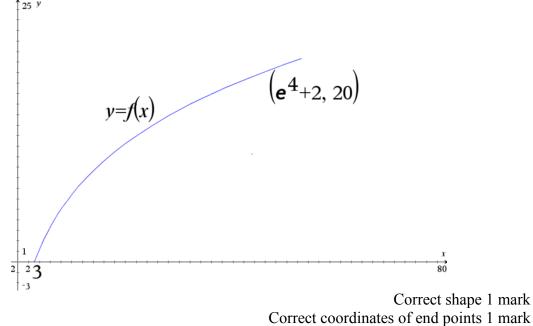
Question 4 (13 marks)

Let
$$x(t) = 2 + e^t$$
, $y(t) = t^2 + t$
a. $x = 2 + e^t \Rightarrow t = \log_e(x - 2) \Rightarrow$ 1 mark
 $y = (\log_e(x - 2))^2 + \log_e(x - 2)$ 1 mark

b. Arc length formula
$$L = \int_{t_1}^{t_2} \sqrt{(x'(t))^2 + (y'(t))^2} dt$$

 $x'(t) = e^t, \quad y'(t) = 2t + 1$
 $L = \int_0^4 \sqrt{(e^t)^2 + (2t+1)^2} dt$
 ≈ 58.35
1 mark





d. Use CAS to solve

$$deSolve((x-2) \cdot y' - 2 \cdot \ln(x-2) - 1 = 0, x, y)$$

$$y = (\ln(x-2))^{2} + \ln(x-2) + c\mathbf{1} + \frac{1}{4}$$

$$1 \text{ mark}$$

Substitute
$$x = 3, y = 0$$
,
 $0 = (\log_e(3-2))^2 + \log_e(3-2) + c_1 + \frac{1}{4}$
 $c_1 = -\frac{1}{4}$
Therefore $y = (\log_e(x-2))^2 + \log_e(x-2)$ is the solution of the differential equation
 $(x-2)\frac{dy}{dx} - 2\log_e(x-2) - 1 = 0$
at (3,0).

e. i.Using CAS

Define
$$g(x) = (x-2) \cdot (\ln(x-2))^2 - (x-2) \cdot \ln(x-2)$$
 Done

ii. i.e.,
$$\frac{d}{dx}(g(x)) = f(x) - 1$$
.

The required area

$$A = \int_3^6 f(x) \, dx = \int_3^6 \left(\frac{d}{dx} \left(g(x)\right) + 1\right) dx$$

lmark

$$= [g(x) + x]_3^6 = g(6) - g(3) + 3$$

1mark

iii. The required volume

$$V = \pi \int_{3}^{6} (f(x))^{2} dx = \pi \int_{3}^{6} ((\log_{e}(x-2))^{2} + \log_{e}(x-2))^{2} dx$$
 1 mark
= 36.56 1 mark

1 mark

1 mark

Question 5 (14 marks)

a.
$$F + R = ma_{\sim} \Rightarrow a = \frac{F+R}{m} = \frac{8i+6j}{2} = 4i + 3j_{\sim}$$

1 mark

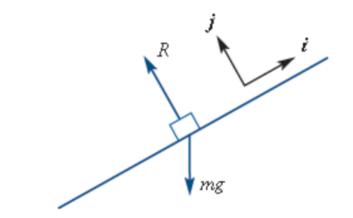
b.
$$v(t) = \int_0^t 4i + 3j dt = 4ti + 3tj$$

 $\sim i$ mark

$$x(t) = \int_0^t 4t \underbrace{i}_{\sim} + 3t \underbrace{j}_{\sim} dt = 2t^2 \underbrace{i}_{\sim} + \frac{3}{2}t^2 \underbrace{j}_{\sim}$$
 1 mark

c. Solve
$$|x(t)| = \sqrt{(2t^2)^2 + (\frac{3}{2}t^2)^2} = 30$$
 for $t, t = 2\sqrt{3}$.
The speed $u = |v(2\sqrt{3})| = 10\sqrt{3} = 17.32$ m/s
1 mark

d. i.



2 marks

ii.
$$v^2 - u^2 = 2as \Rightarrow v^2 = u^2 + 2as = (10\sqrt{3})^2 - 2 \times \frac{1}{2} \times 9.8 \times 24$$
 1 mark
∴ $v = 8.05 \ sm^{-1}$ 1 mark

e. The height of the ramp end from the ground is
$$h = 24 \sin(30^\circ) = 12$$
 m.
The vertical component of the speed: $8.05 \sin(30^\circ) = 4.025 m s^{-1}$. 1 mark
Substitute $u = -4.025$, $a = 9.8$ and $s = 12$ into $v^2 - u^2 = 2as$.
Solve for v , $v = \sqrt{(-4.025)^2 + 2 * 9.8 * 12} = 15.86 m s^{-1}$ 1 mark

f. The resultant force $F = mg - R = 2 \times 9.8 - \frac{1}{4}v - \frac{3}{4} \times 9.8 - 4.25 = 8 - \frac{1}{4}v$. The acceleration $a = \frac{dv}{dt} = \frac{F}{m} = 4 - \frac{1}{8}v$ $\therefore \quad \frac{dv}{dt} = \frac{dv}{dx} \times \frac{dx}{dt} = \frac{vdv}{dx} = \frac{32-v}{8}$ 1 mark

Solve for v by CAS,

$$x = -256 \log_e |32 - v| - 8v + c$$
 1 mark

Substitute v = 15.86, x = 0 solve for c, c = 838.89Hence,

$$x = 838.89 - 256 \log_e |32 - v| - 8v$$
 1 mark