

Units 3 and 4 Specialist Maths: Exam 1

Practice Exam Solutions

Stop!

Don't look at these solutions until you have attempted the exam.

Any questions?

Check the Engage website for updated solutions, then email practiceexams@ee.org.au.

Marks allocated are indicated by a number in square brackets, for example, [1] indicates that the line is worth one mark.

Question 1a

The box is accelerating downward at 2.8 m/s², in one dimensional motion. Taking the downward direction to be positive, the net force acting on the box can be written as:

$$F = ma = mg - N \quad [1]$$

(where mg is the force due to gravity, and N is the reaction force)

Rearranging:

$$m = \frac{N}{(g-a)}$$
$$= \frac{N}{9.8 - 2.8}$$
$$= \frac{N}{7}$$

The scale reads a value proportional to the reaction force $\it N$. Specifically, it outputs:

$$m': N = m'g$$
 [1]

Hence:

$$m = \frac{N}{7}$$

$$= \frac{m'g}{7}$$

$$= \frac{35g}{7}$$

$$= 5g$$

$$= 49 \text{ kg} \qquad [1]$$

Question 1b

Now taking the upwards direction to be positive:

$$F = ma = N - mg$$
 [1]

Rearranging:

$$N = ma + mg$$
$$= m(a + g)$$

Thus the output on the scale is given:

$$m' = \frac{N}{g}$$

$$= \frac{m(a+g)}{g}$$

$$= \frac{m \times \frac{3g}{2}}{g} \text{ since } a = 4.9 = \frac{g}{2}$$

$$= \frac{3m}{2}$$

$$= 73.5 \text{ kg} \quad [1]$$

Question 2

Method 1:

This method is a variation on completing the square.

$$z^{4} + 9z^{2} + 64 = 0$$

$$z^{4} + 16z^{2} + 8^{2} - 7z^{2} = 0 [1]$$

$$(z^{2} + 8)^{2} = 7z^{2}$$

$$z^{2} + 8 = \pm z\sqrt{7} [1]$$

$$\Rightarrow z^{2} + z\sqrt{7} + 8 = 0 \text{ or } z^{2} - z\sqrt{7} + 8 = 0 [1]$$

Each equation can then be solved by the quadratic formula, yielding:

$$z = \frac{-\sqrt{7} \pm \sqrt{7 - 4 \times 1 \times 8}}{2 \times 1} \text{ or } z = \frac{\sqrt{7} \pm \sqrt{7 - 4 \times 1 \times 8}}{2 \times 1} = \frac{\sqrt{7} \pm 5i}{2}$$
 [1]
$$z = \frac{-\sqrt{7} \pm 5i}{2} \text{ or } z = \frac{\sqrt{7} \pm 5i}{2}$$

So the solutions are:

$$z_1 = \frac{-\sqrt{7} - 5i}{2}$$
 $z_2 = \frac{-\sqrt{7} + 5i}{2}$ $z_3 = \frac{\sqrt{7} - 5i}{2}$ $z_4 = \frac{\sqrt{7} + 5i}{2}$ [1]

Method 2:

$$z^{4} + 9z^{2} + 64 = 0$$
Let $a = z^{2}$

$$a^{2} + 9a + 64 = 0$$

$$\left(a + \frac{9}{2}\right)^{2} - \frac{81}{4} + \frac{256}{4} = 0$$

$$\left(a + \frac{9}{2}\right)^{2} = -\frac{175}{4}$$

$$\therefore a = z^{2} = \frac{-9 \pm 5\sqrt{-7}}{2}$$

$$\Rightarrow i^{2}z^{2} = \frac{9 \pm 5\sqrt{-7}}{2}$$

$$\Rightarrow iz = \pm \sqrt{\frac{9 \pm 5\sqrt{-7}}{2}}$$

$$= \pm \frac{\sqrt{18 \pm 10\sqrt{-7}}}{2}$$
[1]

The problem now is that the real and imaginary terms under the square root cannot be separated.

Suppose:

$$18 \pm 10\sqrt{-7} = (A \pm B)^{2}$$

$$9 + X \pm 10\sqrt{-7} + 9 - X = (A \pm B)^{2}$$

$$(\sqrt{9 + X})^{2} \pm 10\sqrt{-7} + (\sqrt{9 - X})^{2} = A^{2} \pm 2AB + B^{2}$$

Now take:

$$A = \sqrt{9 + X}$$
$$B = \sqrt{9 - X}$$

And choose X such that:

$$2AB = 10\sqrt{-7}$$

$$\sqrt{(9+X)(9-X)} = 5\sqrt{-7}$$

$$\Rightarrow 81 - X^2 = 25(-7)$$

$$X^2 = 256$$

$$\Rightarrow X = 16 \text{ (sign is irrelevant because of symmetry in A, B)} [1]$$

Hence:

$$18 \pm 10\sqrt{-7} = (\sqrt{9+16} \pm \sqrt{9-16})^{2}$$
$$= (5 \pm \sqrt{7}i)^{2} \quad [1]$$

And:

$$iz = \pm \frac{\sqrt{18 \pm 10\sqrt{-7}}}{2}$$

$$= \pm \frac{\sqrt{\left(5 \pm \sqrt{7}i\right)^2}}{2}$$

$$= \pm \frac{\left(5 \pm \sqrt{7}i\right)}{2}$$

$$\Rightarrow z = -i \cdot iz$$

$$= \pm \frac{\left(\sqrt{7} \pm 5i\right)}{2}$$

Giving the solutions:

$$z_1 = \frac{-\sqrt{7} - 5i}{2} \quad z_2 = \frac{-\sqrt{7} + 5i}{2} \quad z_3 = \frac{\sqrt{7} - 5i}{2} \quad z_4 = \frac{\sqrt{7} + 5i}{2} \quad [1]$$

Question 3a

Method 1: By implicit differentiation:

Take the natural logarithm of both sides to eliminate the power.

$$y = x^x$$

$$\Rightarrow \ln(y) = x \ln(x) \quad \left[\frac{1}{2}\right]$$

$$\frac{d}{dy}\ln(y) \times \frac{dy}{dx} = \frac{d}{dx}(x\ln(x))$$
 $\left[\frac{1}{2}\right]$

$$\frac{1}{v}\frac{dy}{dx} = x \times \frac{1}{x} + \ln(x) = 1 + \ln(x)$$

$$\frac{dy}{dx} = y + y \times \ln(x) = x^x + x^x \cdot \ln(x) [1]$$

Method 2:

$$y = x^{x}$$

$$= e^{\ln(x^{x})} \quad \left[\frac{1}{2}\right]$$

$$= e^{u} \text{ where } u = x \ln x$$

$$\Rightarrow \frac{dy}{dx} = \frac{d(e^{u})}{du} \times \frac{d(x \ln x)}{dx} \quad \left[\frac{1}{2}\right]$$

$$= e^{u} \left(x \left(\frac{1}{x}\right) + (1) \ln(x)\right)$$

$$= x^{x} (1 + \ln(x)) \quad [1]$$

Question 3b i

$$f(x) \in R^- \cup \{0\}$$
 [1]

This can be worked out from a rough sketch of y = -x and y = arctan(x). They have opposite signs regardless of x.

Question 3b ii

By the product rule:

$$\frac{d}{dx}(x\cos^{-1}(x)) = \cos^{-1}(x) - \frac{x}{\sqrt{1-x^2}}$$
 [1]

Question 3b iii

This is done through anti-differentiation by recognition. The use of the above answer is required for 3 marks. Any other method will be awarded 2 marks.

$$Area = \int_{\frac{1}{2}}^{1} \cos^{-1} x \, dx \quad \left[\frac{1}{2}\right]$$

To evaluate the integral, utilising the answer to part (ii), one may integrate by recognition:

$$\frac{d}{dx}(x\cos^{-1}(x)) = \cos^{-1}(x) - \frac{x}{\sqrt{1-x^2}}$$

$$\Rightarrow \cos^{-1}(x) = \frac{d}{dx}(x\cos^{-1}(x)) + \frac{x}{\sqrt{1-x^2}}$$

$$\therefore \int \cos^{-1}(x) \, dx = x \cos^{-1}(x) + \int \frac{x}{\sqrt{1 - x^2}} dx \quad [1]$$

So:

Area =
$$\int_{\frac{1}{2}}^{1} \cos^{-1} x \, dx$$

= $\left[x \cos^{-1}(x) \right]_{\left(\frac{1}{2}\right)}^{1} + \int_{\left(\frac{1}{2}\right)}^{1} \frac{x}{\sqrt{1 - x^{2}}} dx$
= $-\frac{\pi}{6} + \int_{\left(\frac{1}{2}\right)}^{1} \frac{x}{\sqrt{1 - x^{2}}} dx$

The integral $\int \frac{x}{\sqrt{1-x^2}} dx$ can be evaluated by substitution:

Let
$$u = 1 - x^2 \Rightarrow \frac{du}{dx} = -2x$$
.

Therefore,
$$x = -\frac{1}{2} \cdot \frac{du}{dx}$$
.

Hence, we have:

$$\int \frac{x}{\sqrt{1-x^2}} dx = \int -\frac{1}{2\sqrt{u}} du = -\sqrt{u} \quad \left[\frac{1}{2}\right]$$

And so:

Area =
$$-\frac{\pi}{6} + \int_{\left(\frac{1}{2}\right)}^{1} \frac{x}{\sqrt{1 - x^2}} dx$$

= $-\frac{\pi}{6} - \int_{\left(\frac{3}{4}\right)}^{0} \frac{1}{2\sqrt{u}} du$
= $-\frac{\pi}{6} - \left[\sqrt{u}\right]_{\left(\frac{3}{4}\right)}^{0}$
= $-\frac{\pi}{6} + \frac{\sqrt{3}}{2}$ square units [1]

Question 4a

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$

= $\overrightarrow{AB} + \overrightarrow{AD}$ since $\overrightarrow{AD} = \overrightarrow{BC}$
= $a + d$ [1]

Question 4b

Since M is midpoint of AC, we have:

$$\overrightarrow{AM} = \overrightarrow{MC} = \frac{1}{2}\overrightarrow{AC} = \frac{1}{2}\boldsymbol{a} + \frac{1}{2}\boldsymbol{d}$$

To show that B, M, and D are collinear, it must be shown that $\overrightarrow{DM} = k\overrightarrow{DB}$, that is, that these vectors are parallel.

$$\overrightarrow{DB} = \overrightarrow{DA} + \overrightarrow{AB}$$

$$= \boldsymbol{a} - \boldsymbol{d}$$

$$\overrightarrow{DM} = \overrightarrow{DA} + \overrightarrow{AM}$$

$$= -\boldsymbol{d} + \frac{1}{2}\boldsymbol{a} + \frac{1}{2}\boldsymbol{d}$$

$$= \frac{1}{2}\boldsymbol{a} - \frac{1}{2}\boldsymbol{d}$$

$$= \frac{1}{2}\overrightarrow{DB}$$

(Completion up to this stage is awarded [1]. Note that the expression for \overline{DM} cannot be obtained by claiming \overline{DM} equal $\frac{1}{2}\overline{DB}$, since it has not been proven that M is midpoint of \overline{DB} .)

Hence, we have shown $\overrightarrow{DM} = \frac{1}{2}\overrightarrow{DB}$, as required [1].

Question 5

$$3\sin^2(\theta) + \cos^2(\theta) + \sqrt{3}\sin(2\theta) = 4$$

$$3\sin^2(\theta) + \cos^2(\theta) + 2\sqrt{3}\sin(\theta)\cos(\theta) = 4 \quad [1]$$

$$\left(\sqrt{3}\sin(\theta) + \cos(\theta)\right)^2 = 4$$

$$\sqrt{3}\sin(\theta) + \cos(\theta) = 2$$
 (1) or $\sqrt{3}\sin(\theta) + \cos(\theta) = -2$ (2) [1]

Solving (1):

$$\sqrt{3}\sin(\theta) + \cos(\theta) = 2$$

$$\frac{\sqrt{3}}{2}\sin(\theta) + \frac{1}{2}\cos(\theta) = 1$$

$$\cos\left(\frac{\pi}{6}\right)\sin(\theta) + \sin\left(\frac{\pi}{6}\right)\cos(\theta) = 1$$

$$\Rightarrow \sin\left(\frac{\pi}{6} + \theta\right) = 1$$
 by the compound angle formula [1]

$$\Rightarrow \theta = \frac{\pi}{3}$$
 [1]

Solving (2):

By the same method, obtain:

$$\sin\left(\frac{\pi}{6} + \theta\right) = -1$$

$$\Rightarrow \theta = \frac{-2\pi}{3}$$
 [1]

Deduct [1] if only (I) or (II) is solved, failing to acknowledge ± 2 .

Alternatively:

$$\begin{split} &3\sin^2(\theta)+\cos^2(\theta)+\sqrt{3}\sin(2\theta)=4\\ &\Rightarrow 2\sin^2(\theta)+\sqrt{3}\sin(2\theta)=3 \text{ since } \sin^2(\theta)+\cos^2(\theta)=1 \quad [1]\\ &-(1-2\sin^2(\theta))+\sqrt{3}\sin(2\theta)=2\\ &\Rightarrow -\cos(2\theta)+\sqrt{3}\sin(2\theta)=2 \text{ since } 1-2\sin^2(\theta)=\cos(2\theta) \quad [1]\\ &\left(-\frac{1}{2}\right)\cos(2\theta)+\left(\frac{\sqrt{3}}{2}\right)\sin(2\theta)=1\\ &\sin\left(\frac{-\pi}{6}\right)\cos(2\theta)+\cos\left(-\frac{\pi}{6}\right)\sin(2\theta)=1\\ &\Rightarrow \sin\left(2\theta-\frac{\pi}{6}\right)=1 \text{ by the compound angle formula} \quad [1] \end{split}$$

Hence:

$$2\theta - \frac{\pi}{6} = -\frac{3\pi}{2}, \frac{\pi}{2} \text{ only, since } \theta \in [-\pi, \pi] \Rightarrow \left(2\theta - \frac{\pi}{6}\right) \in \left[-\frac{11\pi}{6}, \frac{13\pi}{6}\right] \quad [1]$$
$$\Rightarrow \theta = -\frac{2\pi}{3}, \frac{\pi}{3} \quad [1]$$

Question 6

$$a = \frac{d}{dx} \left(\frac{1}{2} v^2 \right) = 2x^2 + 1$$
 [1]

Hence, using the initial condition:

$$\int_{2}^{v} d\left(\frac{v^{2}}{2}\right) = \int_{1}^{x} (2\chi^{2} + 1) d\chi$$

$$\frac{v^{2}}{2} - 2 = \left[\frac{2\chi^{3}}{3} + \chi\right]_{1}^{x} = \left[\frac{2\chi^{3}}{3} + \chi\right]_{1}^{0} \text{ at } x = 0$$

$$\frac{v^{2}}{2} = 2 - \frac{2}{3} - 1$$

$$= \frac{1}{3}$$

$$\therefore v = \pm \frac{\sqrt{6}}{3} \text{ ms}^{-1}$$

Question 7a i

$$E(4X - 2Y + 6) = 4E(X) - 2E(Y) + 6 = 44$$
 [1]

Question 7a ii

 $Var(4X - 2Y + 6) = 4^2Var(X) + 2^2Var(Y)$ since the distributions are independent = 100 [1].

Hence, sd = 10.

Question 7b

The standard error for 95% confidence interval is $z \frac{s}{\sqrt{n}} = 1.96 \times \frac{\sqrt{256}}{\sqrt{64}} = 3.92$ [1]

The 95% CI is [173-3.92, 173+3.92] = [169.08, 176.92].

 $176 \in 95\%$ Cl. Hence, the prediction is **not rejected**. [1] (saying the prediction is **accepted** is not acceptable).

Let *H* be the height of a given individual.

 $H \sim N(\mu, 256)$ where μ is the true mean of the population

$$\overline{H} = \frac{1}{n} \sum_{i} H_i \sim N\left(\mu, \frac{256}{n}\right)$$
 since it is a some of identical independent normal random variables

Thus,

$$Z = \frac{\overline{H} - \mu}{\left(\frac{16}{\sqrt{n}}\right)} \sim N(0,1)$$

$$Pr(-1.96 < Z < 1.96) = 0.95$$

$$\Rightarrow$$
 $Z \in (-1.96, 1.96)$ with 95% confidence

$$\Rightarrow \frac{\overline{H} - \mu}{\left(\frac{16}{\sqrt{n}}\right)} \in (-1.96, 1.96)$$

$$\Rightarrow \mu \in \left(\overline{H} - 1.96\left(\frac{16}{\sqrt{n}}\right), \overline{H} + 1.96\left(\frac{16}{\sqrt{n}}\right)\right)$$

Substituting the given numbers:

$$\mu \in \left(173 - 1.96\left(\frac{16}{8}\right), 173 + 1.96\left(\frac{16}{8}\right)\right)$$
 $\mu \in (169.08, 176.92) \text{ with } 95\% \text{ confidence} \quad [1/2]$

Since the prediction, 176cm is an element of the 95% confidence interval, the prediction cannot be rejected at the 0.05 significance level [1].

Question 8a

$$x = k \tan(t) - 1$$

$$\therefore \tan(t) = \frac{x+1}{k}$$

$$y = 3\sec(t) - 8$$

$$\therefore \sec(t) = \frac{y+8}{3}$$

From the trigonometric identity:

$$\sec^2(t) - \tan^2(t) = 1$$

$$\Rightarrow \frac{(y+8)^2}{9} - \frac{(x+1)^2}{k^2} = 1$$

Question 8b

Implicit differentiation is used. The use of chain rule for $\frac{dx}{dt}$ and $\frac{dy}{dt}$ is also accepted. Working needed.

$$\frac{2(y+8)}{9} \times \frac{dy}{dx} - \frac{2(x+1)}{k^2} = 0$$
 [1]

$$\therefore \frac{dy}{dx} = \frac{9(x+1)}{(y+8)k^2} \qquad [1]$$

Question 8c

The normal has a gradient of $\frac{-2}{3}$. Hence, the gradient of the path at point x = 2 equals $\frac{3}{2}$, so we have at, x = 2:

$$\frac{dy}{dx} = \frac{9(x+1)}{(y+8)k^2} = \frac{9(2+1)}{(y+8)k^2} = \frac{3}{2} (1)$$

The point at x = 2 also satisfies the equation of the normal:

$$3y + 2(2) = -2 \Rightarrow y = -2.$$

Sub y = -2 into (1), we have:

$$\frac{27}{6k^2} = \frac{3}{2}$$

$$k^2 = 3$$

$$k = \sqrt{3}$$
 (only, since $k > 0$)