The Mathematical Association of Victoria

Trial Examination 2017 SPECIALIST MATHEMATICS

Written Examination 2

STUDENT NAME _____

Reading time: 15 minutes

Writing time: 2 hours

QUESTION & ANSWER BOOK

Structure of Book

Section	Number of Questions	Number of questions to be answered	Number of marks
А	20	20	20
В	6	6	60
			Total 80

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, a protractor, set-squares, aids for curve sketching, one bound reference, one approved technology (calculator or software) and, if desired, one scientific calculator. Calculator memory DOES NOT need to be cleared. For approved computer-based CAS, full functionality may be used.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 23 pages.
- Formula sheet
- Answer sheet for multiple-choice questions.

Instructions

- Write your **name** in the space provided above on this page.
- Write your **name** on the multiple-choice answer sheet
- Unless otherwise indicated, the diagrams are **not** drawn to scale.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

SECTION A

Instructions for Section A

Answer all questions in pencil on the answer sheet provided for multiple-choice questions.

Choose the response that is **correct** for the question.

A correct answer scores 1, an incorrect answer scores 0.

Marks will **not** be deducted for incorrect answers.

No marks will be given if more than one answer is completed for any question.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Take the **acceleration due to gravity** to have magnitude $g \text{ ms}^{-2}$, where g = 9.8

Question 1

If
$$z = \sqrt{3} - i$$
, $w = 4(1+i)$ and $\operatorname{Arg}\left(\frac{z^k}{\overline{w}}\right) = \frac{11\pi}{12}$ then a possible value of k is

- **A.** 2
- **B.** 3
- **C.** 6
- **D.** 8
- **E.** 10

Question 2

If 2-i is a root of the equation $z^3 + bz^2 + 17z - 15 = 0$ where $b \in R$, then b is

- **A.** −1
- **B.** 7
- **C.** $-\frac{19}{2}$
- **D.** 1
- **E.** –7

Question 3

If (a+i)(1-ai) = 6 + (b+2)i where $a, b \in R$ then

- **A.** ab = 30
- **B.** b + a = 7

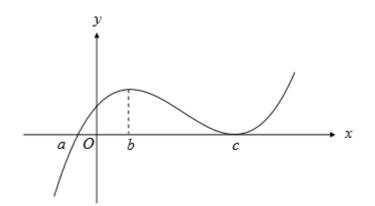
C.
$$\frac{b}{-}=4$$

D.
$$a+b = -7$$

E.
$$\frac{b}{a} = -4$$

SECTION A - continued

TURN OVER


If
$$\operatorname{cosec}(x) = \frac{4\sqrt{7}}{7}$$
, $\frac{\pi}{2} < x < \pi$ then $\operatorname{sec}(x) + \tan(x)$ is
A. $-\frac{4}{3} + \frac{3\sqrt{7}}{16}$
B. $-\left(\frac{12 - 3\sqrt{7}}{12}\right)$
C. $-\frac{1}{3}(4 + \sqrt{7})$
D. $-\frac{4}{3}(1 - \sqrt{7})$
E. $-\frac{1}{3}(4 - \sqrt{7})$

Question 5

If $3\cos(2\theta) + 5\sin(\theta) - 2 = 0$ then the following are solutions

A.
$$\sin(\theta) = 1$$
 and $\sin(\theta) = -\frac{1}{6}$
B. $\cos(\theta) = 1$ and $\cos(\theta) = -\frac{1}{6}$
C. $\sin(\theta) = -1$ and $\sin(\theta) = -\frac{1}{6}$
D. $\sin(\theta) = -1$ and $\cos(\theta) = \frac{1}{6}$
E. $\sin(\theta) = 1$ and $\sin(\theta) = \frac{1}{6}$

The graph of y = f(x) is shown below.

If F(x) is an antiderivative of f(x), then the graph of y = F(x) will have a

- **A.** local maximum at x = b
- **B.** local maximum at x = a
- C. point of inflexion at x = a
- **D.** zero gradient at x = b
- **E.** point of inflexion at x = c

Question 7

If $f'(t) = \ln(2t+1)$ and f(0) = 2 then the value of f(1) can be found by evaluating

A.
$$\int_{0}^{1} (\ln(2t+1)-2)dt$$

B.
$$\int_{0}^{2} (\ln(2t+1)dt-1)$$

C.
$$\int_{0}^{1} (2+\ln(2t+1))dt$$

D.
$$\int_{1}^{0} (2-\ln(2t+1))dt$$

E.
$$\int_{0}^{1} \ln(2t+1)dt+2$$

SECTION A - continued

TURN OVER

The gradient of the curve $y^2 + 2yx^4 = 33$ when y = 1 in the first quadrant is equal to

A.	$-\frac{31}{34}$
B.	$-\frac{32}{17}$
C.	$\frac{31}{24}$

 $\frac{1}{34}$

D. −32

E. $\frac{31}{17}$

Question 9

 $\int_{\frac{\pi}{6}}^{2\pi/3} (\tan^3(x) + \tan(x)) dx$ is equivalent to

A.
$$\int_{-\sqrt{3}}^{\sqrt{3}} u du$$

B.
$$\int_{\sqrt{3}}^{-\sqrt{3}} (u^3 + u) du$$

C.
$$\int_{\pi/6}^{\pi/3} (u^3 + u) du$$

D.
$$\int_{\sqrt{3}}^{-\sqrt{3}} u^3 du$$

E.
$$-\int_{-\sqrt{3}}^{\sqrt{3}} u du$$

SECTION A – continued

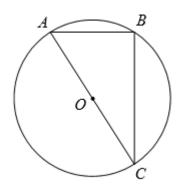
The graph of the function $y = \sqrt{\frac{16x^4 - 1}{x^4}}$, between the lines y = 2 and y = 3 is rotated about the y-axis to form a solid of revolution. The volume formed is given by

$$\mathbf{A.} \quad \cos^{-1}\left(\frac{3}{4}\right) - \frac{\pi}{3}$$

B.
$$\pi \sin^{-1}\left(\frac{3}{4}\right) - \frac{\pi^2}{6}$$

$$\mathbf{C.} \quad \frac{\ln 7}{8} - \frac{\ln 3}{8}$$

$$\mathbf{D.} \quad \pi \sin^{-1} \left(\frac{3}{4}\right) + \frac{\pi^2}{6}$$


$$\mathbf{E.} \qquad \frac{\pi}{4} \left(\tan^{-1} \left(\frac{3}{4} \right) - \tan^{-1} \left(\frac{1}{2} \right) \right)$$

Question 11

 $\underline{a} = 8\underline{i} - \underline{j} + 13\underline{k}$, $\underline{b} = m\underline{i} - \underline{j} + 3\underline{k}$ and $\underline{c} = \underline{i} + \underline{j} + 2\underline{k}$ are linearly dependent when

A.
$$m = \frac{1}{3}$$

B. $m = -\frac{2}{3}$
C. $m = -2$
D. $m = -\frac{1}{3}$
E. $m = 2$

SECTION A – continued TURN OVER

If the points A,B and C lie on the circumference of the circle whose centre is *O*, which of the following statements is **not** true?

- **A.** $\overrightarrow{AB} = \overrightarrow{AC} \overrightarrow{BC}$
- **B.** $\overrightarrow{AB}.\overrightarrow{AC} = \left|\overrightarrow{BA}\right| \left|\overrightarrow{AC}\right| \cos(A)$
- C. $(\overrightarrow{CA} + \overrightarrow{AB}).\overrightarrow{CB} = |\overrightarrow{CB}|^2$ D. $|\overrightarrow{AB}| + |\overrightarrow{BC}| = |\overrightarrow{AC}|$

E.
$$\overrightarrow{BA} \cdot \overrightarrow{BC} = 0$$

Question 13

The acceleration $a \text{ ms}^{-2}$ of a body moving in a straight line when it is x m from the origin is given by $a = \frac{1}{\sqrt{(9 - x^2)}}$ If the velocity, v, of the body is 2ms^{-1} when it passes through the origin, then the function

for x is given by

A. $x = 3\sin\left(\frac{v^2 - 4}{2}\right)$ B. $x = 2\sin\left(\frac{2 - v^2}{3}\right)$ C. $x = 3\cos\left(\frac{v^2 - 2}{3}\right)$

$$\mathbf{C.} \qquad x = 3\cos\left(\frac{v-2}{2}\right)$$

$$\mathbf{D.} \qquad x = 3\sin(v^2 - 2)$$

 $\mathbf{E.} \qquad x = 2\sin^{-1}\left(\frac{v}{3}\right)$

SECTION A - continued

The position vector of a particle at time t, $t \ge 0$, is given by $\mathbf{r} = 2\sqrt{t}\mathbf{i} + (5-t)\mathbf{j}$. The particle is closest to the origin when

- **A.** t = 0
- **B.** t = 1
- **C.** $t = \frac{3}{2}$ **D.** t = 3
- **E.** t = 5

Question 15

A smooth inclined plane makes an angle of θ^o to the horizontal. An object of mass *m* kg is held at rest on this plane by a force F newtons inclined at α^o upwards to the plane. If the normal reaction of the mass on the plane is R newtons, which of the following statements is true?

- A. $R = mg \cos \theta + F \sin \alpha$
- **B.** F sin α mg cos θ = 0
- **C.** $\tan \alpha = \frac{mg\cos\theta R}{mg\sin\theta}$

D.
$$F = \frac{m\sin\theta}{d\theta}$$

$$\cos \alpha$$

E. $\tan \alpha = \frac{F\cos \theta}{1-2}$

$$\tan \alpha = \frac{1}{R - F\sin \theta}$$

Question 16

A body of mass 10 kg is acted upon by three forces \underline{F}_1 , \underline{F}_2 and \underline{F}_3 all measured in Newtons. If, at time *t* seconds, $\underline{F}_1 = 2\underline{i} + (t-3)\underline{j}$, $\underline{F}_2 = -t^2\underline{i} - \underline{j}$ and $\underline{F}_3 = 5t\underline{i} + 2\underline{j}$ then the magnitude of the acceleration of the body in ms⁻² when t = 3 is

A. $\frac{\sqrt{65}}{10}$ **B.** $\frac{73}{10}$ **C.** 65 **D.** 9 **E.** $\frac{\sqrt{65}}{5}$

> SECTION A – continued TURN OVER

A confidence interval estimate for a population mean can be used to test a null hypothesis about the population mean only if

- A. The distribution is symmetrical
- **B.** A one-tailed test is used
- C. A two-tailed test is used
- **D.** All of the above statements are true
- E. None of the above statements are true

Question 18

X is a random variable with E(X) = 14.2 and Var(X) = 2.3. *Y* is another random variable with E(Y) = 5.5and Var(Y) = 0.8. If *X* and *Y* are independent variables and W = 2X - Y + 3 then

- A. E(W) = 22.9 and $SD(W) = \sqrt{13}$
- **B.** E(W) = 22.9 and $SD(W) = \sqrt{10}$
- C. E(W) = 33.9 and SD(W) = 10
- **D.** E(W) = 25.9 and $SD(W) = \sqrt{10}$
- **E.** E(W) = 25.9 and $SD(W) = \sqrt{13}$

Question 19

A Type II error is made when the

- A. alternative hypothesis is accepted when it is true
- **B.** null hypothesis is accepted when it is false
- C. null hypothesis is true and we accept it
- **D.** null hypothesis is rejected when it is true
- E. alternative hypothesis is accepted when it is false

Question 20

The distribution of serum vitamin E in a certain population is approximately normal with mean $800\mu g/dL$ and standard deviation $200\mu g/dL$, ($\mu g/dL$ stands for micrograms per decilitre). In a random sample of 20 people, the mean vitamin E level would lie within which range approximately 95% of the time

- A. Between $780\mu g/dL$ and $820\mu g/dL$
- **B.** Between $408\mu g/dL$ and $1192\mu g/dL$
- C. Between $712\mu g/dL$ and $888\mu g/dL$
- **D.** Between 760 μ g/dL and 839 μ g/dL
- **E.** Between $625\mu g/dL$ and $975\mu g/dL$

END OF SECTION A

SECTION B

Instructions for Section B

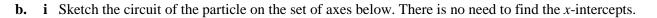
Answer **all** questions in the spaces provided.

Unless otherwise specified, an **exact** answer is required to a question.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

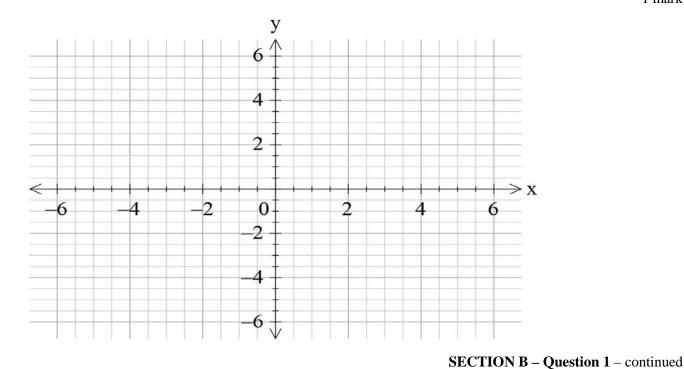
Take the **acceleration due to gravity** to have magnitude $g \text{ ms}^{-2}$, where g = 9.8


Question 1 (11 marks)

A particle travels in a closed circuit. At time t secs it has a position vector, measured in metres, given by

 $\mathbf{r}(t) = 2\cos(t)\mathbf{i} + (2 + 3\sin(2t))\mathbf{j}, t \ge 0$

a. Show that the Cartesian equation of the path of the particle can be written as


$$9(x^2 - 2)^2 + 4(y - 2)^2 = 36$$
 1 mark

1 mark

TURN OVER

12

	ii. Mark the starting point and the directions of motion of the particle on the diagram above.	1 mark
c.	How long does it take the particle to complete one full circuit?	1 mark
_		
d.	Find an expression for the speed of the particle at time <i>t</i> secs.	1 mark
e.	For $0 < t \le 2\pi$, what are the maximum and minimum speeds of the particle?	2 marks

SECTION B – Question 1 – continued

f.

i. Write down a definite integral for the length that the particle has travelled in the first 2 seconds.

1 mark

1 mark

- **ii.** Find this length. Give your answer to two decimal places.
- **g.** Find the first time at which the particle will be travelling in a direction parallel to the line y = 3x. Give your answer correct to two decimal places.

2 marks

SECTION B — continued TURN OVER

Question 2 (9 marks)

Points A, B, C and D have position vectors $\underline{a} = \underline{i} + m\underline{j}$, $\underline{b} = -2\underline{i} + 2\underline{j}$, $\underline{c} = n\underline{i} + 2\underline{j}$ and $\underline{d} = 6\underline{i} + 6\underline{j}$ relative to the origin O, where *m* and *n* are real numbers.

a. Find \overrightarrow{AB} and \overrightarrow{AD} in terms of *m*.

b. If ABCD is a rhombus, find the values of *m* and *n*.

c. Find \overrightarrow{AE} the vector resolute of \overrightarrow{AB} parallel to \overrightarrow{AD} .

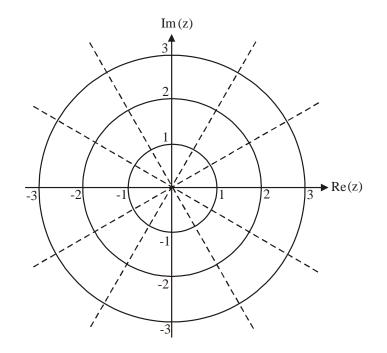
d. Find the area of triangle ABE.

2 marks

2 marks

1 mark

2 marks


e. If F divides \overrightarrow{CD} in the ratio 2:1, find the angle θ° between vector \overrightarrow{BD} and \overrightarrow{BF} . Give your answer correct to two decimal places. 2 marks

SECTION B — continued TURN OVER

Question 3 (11 marks)

w, \overline{w} and v are the solutions of the equation $\{z : z^3 = k, z \in C\}$ where $w = 3\operatorname{cis}\left(\frac{\pi}{3}\right)$

a. Plot w, \overline{w} and v on the Argand diagram below.

b. Find the value of *k*.

c. Show that $w \in \{z : \sqrt{3} \operatorname{Im}(z) - \operatorname{Re}(z) = 3\}$.

d. On the Argand diagram given in part a.

i. Sketch $\{z: \sqrt{3} \operatorname{Im}(z) - \operatorname{Re}(z) = 3\}$

16

1 mark

1 mark

2 marks

1 mark

SECTION B – Question 3 – continued

ii. Sketch the ray given by
$$\{z : \operatorname{Arg}(z) = \operatorname{Arg}(\overline{w}^{\frac{1}{2}})\}$$
 2 marks

e. If u = 1 + i

ii.

i. Express $\frac{4w}{u}$ in Cartesian form

Express $\frac{4w}{u}$ in Polar form

1 mark

1 mark

iii. Hence, express $\tan\left(\frac{\pi}{12}\right)$ in the form $a - \sqrt{b}$ where a and b are positive integers.

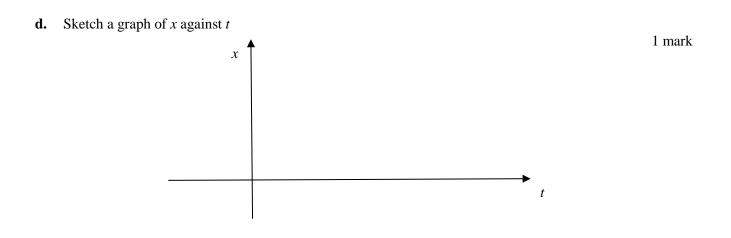
2 marks

SECTION B – continued TURN OVER

Question 4 (9 marks)

A tank initially contains 100 litres of water with 5kg of salt dissolved uniformly into it. A salt solution with a concentration of 0.1kg/litre flows into the tank at a rate of 2litres/min. The mixture is kept uniform by stirring and flows out at the rate of 2litres/min. If *x* kilograms is the amount of salt in the tank after *t* minutes

a. Show that the differential equation for *x* in terms of *t* is


$$\frac{dx}{dt} = \frac{10 - x}{50}$$

1 mark

2 marks

b. Solve this differential equation to give *x* as a function of *t*.

c. Calculate the amount of salt in the tank after 2 minutes. Give your answer correct to 2 decimal places. 1 mark

- e. The outflow is now adjusted to 3litres/min instead of 2litres/min
 - i. Set up a new differential equation for x in terms of t. Do not attempt to solve it.

1 mark

ii. Use Euler's method with increments of 1 minute to predict the amount of salt in the tank after 2 minutes. Give your answer correct to 3 decimal places.

2 marks

iii. Verify that the following is a solution for this differential equation

$$x = \frac{1}{10}(100 - t) - \frac{5}{1000000}(100 - t)^3$$

2 marks

A baggage ramp in an airport is 6 metres in length and is inclined at 25 degrees to the horizontal. A suitcase of mass 15kg is initially at rest at the top of the ramp. The suitcase slides down the ramp under the force of gravity with a constant frictional force of 40N acting upon it.

a. Mark in all of the forces acting on the suitcase.

1 mark

b. Find the acceleration of the suitcase down the ramp. Give your answer correct to 2 decimal places. 2 marks

c.	Find the time taken for the suitcase to reach the bottom of the ramp. Give your answer correct to 2 decimal places.
	2 mark

d. An identical suitcase, also initially at rest, is pushed down the ramp with a force of 30-50t for the first 0.6 seconds. Show that the acceleration of this suitcase at time t where $0 < t \le 0.6$ is approximately 10

$$3.47 - \frac{10}{3}t$$

1 mark

Using this approximate acceleration, find the speed of this second suitcase when t = 0.6. Give your e. answer correct to 2 decimal places.

2 marks

f. How long does it take this suitcase to reach the bottom of the ramp? Give your answer correct to 2 decimal places.

3 marks

Question 6 (9 marks)

The monthly turnover of a retail shop is normally distributed with an average of \$40500 per month and a standard deviation of \$4500

a. What is the probability that in a three monthly period of time the mean turnover per month would be more than \$42000? Give your answer correct to three decimal places.

2 marks

b. What is the probability that the shop will turnover more than half a million dollars in a year? Give your answer correct to three decimal places.

2 marks

c. What is the probability of them turning over more than half a million dollars in a year, given that they are guaranteed to turn over at least \$480000? Give your answer correct to three decimal places.

2 marks

SECTION B – Question 6 – continued

3 marks

END OF QUESTION AND ANSWER BOOK

© The Mathematical Association of Victoria, 2017