SPECIALIST MATHEMATICS

Units 3 & 4 – Written examination 2

2017 Trial Examination

SOLUTIONS

SECTION A: Multiple-choice questions (1 mark each)

Question 1

Answer: D

Explanation:

$$x = \frac{1}{3}\cos(2t) = \frac{1}{3}(1 - 2\sin^2(t)) = \frac{1}{3}(1 - 2(2y)^2) \Rightarrow$$

3x + 8y² = 1

Question 2

Answer: B

Explanation

$$-\frac{\pi}{2} < \arctan(3x+1) < \frac{\pi}{2}$$
$$-\frac{3\pi}{2} < -3\arctan(3x+1) < \frac{3\pi}{2}$$
$$2\arctan(\sqrt{3}) - \frac{3\pi}{2} < 2\arctan(\sqrt{3}) - 3\arctan(3x+1) < 2\arctan(\sqrt{3}) + \frac{3\pi}{2}$$
$$-\frac{5\pi}{6} = \frac{2\pi}{3} - \frac{3\pi}{2} < 2\arctan(\sqrt{3}) - 3\arctan(3x+1) < \frac{2\pi}{3} + \frac{3\pi}{2} = \frac{13\pi}{6}$$

Question 3

Answer: E

Explanation: Simplify by CAS $expand\left(\frac{2 \cdot x^3 + 5 \cdot x^2 + 2 \cdot x - 1}{x^2 - 1}\right)$ $f(x) = 2x + 5 + \frac{4}{x - 1}$ has an oblique asymptote y = 2x + 5a vertical asymptote x = 1

Question 4

Answer: D

Explanation: Let $z_1 = 2 + 3i$, $z_2 = 2 - 3i$ and z_3 be the three roots of the polynomial. Then $P(z) = (z - z_1)(z - z_2)(z - z_3)$ $-z_1 z_2 z_3 = -39$ $z_3 = \frac{39}{z_1 z_2} = \frac{39}{13} = 3$ Expand $(z - z_1)(z - z_2)(z - z_3)$ by CAS expand $((z - (2 + 3 \cdot i)) \cdot (z - (2 - 3 \cdot i)) \cdot (z - 3))$ b = -7, c = 25

Question 5

Answer: A

Explanation: Using CAS	
Define $arg(a,b)$ =angle $(a-2 \cdot b \cdot i)$	Done
$arg(-6,-\sqrt{3})$	$\frac{5 \cdot \pi}{6}$

Question 6

Answer: E

Explanation:

$$z^{4} + ri = (z - z_{1})(z - z_{2})(z - z_{3})(z - z_{4})$$

= $z^{4} - (z_{1} + z_{2} + z_{3} + z_{4})z^{3} + (z_{1}z_{2} + z_{2}z_{3} + z_{3}z_{4} + z_{4}z_{1})z^{2}$
 $-(z_{1}z_{2}z_{3} + z_{2}z_{3}z_{4} + z_{3}z_{4}z_{1} + z_{4}z_{1}z_{2})z + z_{1}z_{2}z_{3}z_{4}$

Therefore

$$\begin{array}{l} z_1 + z_2 + z_3 + z_4 = 0 \\ z_1 z_2 + z_2 z_3 + z_3 z_4 + z_4 z_1 = 0 \\ z_1 z_2 z_3 + z_2 z_3 z_4 + z_3 z_4 z_1 + z_4 z_1 z_2 = 0 \\ z_1 z_2 z_3 z_4 = ri, \ \textit{hence it's impossible to have } \mathbf{z_1} = \overline{\mathbf{z_2}}, \ \ \mathbf{z_3} = \overline{\mathbf{z_4}}. \end{array}$$

OR

 $z^4 = -ri = r \operatorname{cis}\left(-\frac{\pi}{2}\right) \Rightarrow$

 z_1, z_2, z_3 and z_4 have principal arguments $-\frac{\pi}{8}, \frac{3\pi}{8}, \frac{7\pi}{8}$ and $-\frac{5\pi}{8}$. They are not in conjugate pairs.

Question 7

Answer: C

Explanation: Using CAS	
Define $x(t) = \tan(t) - 2 \cdot t$	Done
Define $y(t)=2 \cdot \ln(\sec(t))$	Done
$\triangle \frac{d}{dt}(y(t))$	$2 \cdot \tan(t)$
$\frac{d}{dt}(x(t))$	$\frac{-\left(2\cdot\left(\cos(t)\right)^2-1\right)}{\left(\cos(t)\right)^2}$
$\wedge \frac{2 \cdot \tan(t)}{-\left(2 \cdot (\cos(t))^2 - 1\right)}}{(\cos(t))^2}$	$\frac{-2\cdot\sin(t)\cdot\cos(t)}{2\cdot(\cos(t))^2-1}$
	$-\tan(2 \cdot t)$

Question 8

Answer: D

Explanation: Let $u = x^3 - x^2 + 19x + 8.$ Then $\frac{du}{dx} = 3x^2 - 2x + 19 \Rightarrow dx = \frac{1}{3x^2 - 2x + 19} du$ $\int_0^1 ((3x^2 - 2x + 19)^3 \sqrt{x^3 - x^2 + 19x + 8}) dx = \int_8^{27} u^{\frac{1}{3}} du$

Question 9

Answer: C

Explanation:					
From CAS we have					
Define $f(x) = \sin(x) + \cos(x)$				Done	
$euler(f(x), x, y, \{0, 0.3\}, 1, 0.1)$	$\begin{bmatrix} 0.\\ 1. \end{bmatrix}$	0.1 1.1	0.2 1.20948	0.3 1.32736	

Therefore

 $y_3 = y_2 + 0.1 \times f(0.2) = 1.21 + 0.1f(0.2)$

Question 10

Answer: E

Explanation:

From CAS we have

Question 11

Answer: D

Explanation:

A useful mathematical model for setting up differential equations of dynamic systems

$$\frac{dQ}{dt} = R_{in} \times C_{in} - R_{out} \times C_{out}$$

where R_{in} and R_{out} are the flowing in and flowing out rate; C_{in} and C_{out} are the concentrations of the solutions which are flowing in and flowing out respectively. Therefore

$$\frac{dQ}{dt} = 8 \times 200 - 6 \times \frac{Q}{300 + (8 - 6)t} = 1600 - \frac{3Q}{150 + t}$$
$$\frac{dQ}{dt} + \frac{3Q}{150 + t} = 1600$$

Question 12

Answer: A

Explanation: Solve $|u - (u \cdot \hat{v})\hat{v}| = \frac{\sqrt{10}}{2}$ for a in CAS Define $u = \begin{bmatrix} -1 & a & 1 \end{bmatrix}$ Done Define $v = \begin{bmatrix} 1 & 3 & 2 \end{bmatrix}$ Done Define vh = unit V(v) Done solve $\left(norm (u - dot P(u, vh) \cdot vh) = \frac{\sqrt{10}}{2}, a \right)$ $a = \frac{-4}{5}$ or a = 2

Question 13

Answer: C

Explanation: Solve det $\begin{pmatrix} 3 & 2 & 4 \\ m & 1 & -2 \\ 1 & m & 2 \end{pmatrix} \neq 0$ for m in CAS, $m \neq -1$ and $m \neq \frac{1}{2}$

Question 14

Answer: E

Explanation:

$$a = \frac{1}{m} \left(F_1 + F_2 \right) = \frac{1}{12} \left(-5i + 2j \right) \Rightarrow \left| a \right| = \frac{1}{12} \sqrt{(-5)^2 + 2^2} = \frac{\sqrt{29}}{12}$$

Question 15

Answer: A

Explanation: By Lammi's Theorem

$$\frac{F_1}{\sin(120^\circ)} = \frac{F_2}{\sin(90^\circ)} = \frac{F_3}{\sin(150^\circ)}$$

Therefore

$$\frac{2\sqrt{3}}{3}F_1 = F_2 = 2F_3$$

Question 16

Answer: D

Explanation:
The velocity
$$v = 30 \cos(15^{\circ}) \underbrace{i}_{v} + (30 \sin(15^{\circ}) + 9.8t) \underbrace{j}_{v}$$

The vertical height travelled $h = 30 \sin(15^{\circ}) t + \frac{1}{2} \times 9.8t^{2} = 2.5 \Rightarrow t \approx 0.274 s$
Therefore, the travelled distance
 $L = \int_{0}^{0.2744} |30 \cos(15^{\circ}) \underbrace{i}_{v} + (30 \sin(15^{\circ}) + 9.8t) \underbrace{j}_{v}| dt \approx 8.34 m$
solve $\left(30 \cdot \sin(15^{\circ}) \cdot t + \frac{1}{2} \cdot 9.8 \cdot t^{2} = 2.5, t\right)$
 $t = 1.85905 \text{ or } t = 0.274443$
 $\int_{0}^{0.274443} \operatorname{norm} \left(\left[30 \cdot \cos(15^{\circ}) + 9.8 \cdot t \right] \right) dt$
8.33891

0

Question 17

Answer: B

Explanation:

$$v\frac{dv}{dx} = \frac{v(2x+1)}{(x+1)(3x+2)}$$

$$v(10) - v(2) = \int_2^{10} \frac{2x+1}{(3x+2)(x+1)} dx$$

$$v(10) = \int_{2}^{10} \left(\frac{-1}{3x+2} - \frac{-1}{x+1}\right) dx + v(2) = \int_{2}^{10} \left(\frac{1}{x+1} - \frac{1}{3x+2}\right) dx + 5$$

Question 18

Answer:

Explanation:

 $mean = 5 \times 430 + 10 \times 250 = 4650$ std = $\sqrt{5 \times 25^2 + 10 \times 10^2} = 5\sqrt{165}$

Question 19

Answer: E

Explanation:

z Interval	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	×
σ:	5.2	•
⊼:	20.5	-
n:	64	-
C Level:	0.95	-
	ОК	ancel

zInterval 5.2,20.5,64,0.95: stat.results	Title "	"z Interval"
	"CLower"	19.226
	"CUpper"	21.774
	" x "	20.5
	"ME"	1.27398
	"n"	64.
	["σ"	5.2

Question 20

Answer: B

Explanation:

Enter the statistics into CAS

z Test		×
μ0:	200	•
σ:	30	•
x :	211.6	•
n:	36	•
Alternate Hyp:	Ha: μ > μ0 👻	
	OKCance	

zTest 200,30,211.6,36,1: stat.results "Title" "z Test" "Alternate Hyp" " $\mu > \mu 0$ " "z" 2.32 "PVal" 0.01017 " \bar{x} " 211.6 "n" 36. " σ " 30.

 $p \approx 0.0102$ is less than 0.05, hence enough evidence to reject H_0 .

SECTION B: Extended Response questions

Question 1 (10 marks)

a.
$$f'(x) = \frac{4x^3 - 16x^2 + 16x + 3}{(x-2)^2}$$

Solve $f'(x) = 0$ for $x, x \approx -0.1607$.
 $f(-0.1607) \approx 2.440$
The required stationary point is (-0.16, 2.44). 1 mark

b. Solve f''(x) = 0 for x by CAS, $x \approx 3.1447$ 1 mark $f(3.1447) \approx 18.1577$ The required point of inflection is (3.14, 18.16) 1 mark

Labelling the turning point and the point of inflection	1 mark
Labelling the end points	1 mark
Correct graph for $x \in [-3, 2) \cup (2, 5]$	1 mark

d. *i.*
$$L = \int_{-3}^{1} \sqrt{1 + (f'(x))^2} \, dx = \int_{-3}^{1} \sqrt{1 + (\frac{4x^3 - 16x^2 + 16x + 3}{(x - 2)^2})^2} \, dx$$
 1 mark
ii. $\approx 21.44 \text{ units}$ 1 mark
e. $V = \pi \int_{-3}^{1} (f(x))^2 \, dx$ 1 mark
 $\approx 888 \text{ units}^3$ 1 mark

 $\approx 888 \text{ units}^3$

© TSSM 2017

Question 2 (11 marks)

a. Solve
$$|x + yi + \frac{9}{2} + (\frac{7\sqrt{3}}{2} - 1)i| = |x + yi - (\sqrt{3} + 1)i|$$
 for y in CAS. 1 mark
solve $\left| x + y \cdot i + \frac{9}{2} + (\frac{7\sqrt{3}}{2} - 1) \cdot i \right| = |x + y \cdot i - (\sqrt{3} + 1) \cdot i|_y \right)$
expand $\left(\frac{-\sqrt{3} \cdot (x - \sqrt{3} + 6)}{3} \right)$
Therefore, $y = \frac{-\sqrt{3}}{3}x - 2\sqrt{3} + 1$
1 mark

Therefore,

b. Solve $\left|z + \frac{9}{2} + \left(\frac{7\sqrt{3}}{2} - 1\right)i\right| = \left|z - (\sqrt{3} + 1)i\right|$ and |z + 1 - i| = 5 simultaneously in CAS. 1 mark

solve
$$\left(\begin{vmatrix} x+y \cdot i + \frac{9}{2} + \left(\frac{7 \cdot \sqrt{3}}{2} - 1\right) \cdot i \end{vmatrix} = |x+y \cdot i - (\sqrt{3} + 1) \cdot i|_{x,y} \right)$$

 $x=-6 \text{ and } y=1 \text{ or } x=\frac{3}{2} \text{ and } y=\frac{-(5 \cdot \sqrt{3} - 2)}{2}$

The intersections are B(-6, 1) and $C(\frac{3}{2}, 1-\frac{5\sqrt{3}}{2})$.

1 mark

c. Graph

Correct graphs for the circle and the line Labelling the intersections

d. $\angle ABC = \arctan\left(\frac{\sqrt{3}}{3}\right) = 30^{\circ} \Rightarrow$ 1 mark $\angle BAC = 180^{\circ} - 2 \times 30^{\circ} = 120^{\circ}$ 1 mark

e. The area of the minor sector $A_1 = \frac{1}{3} \times \pi r^2 = \frac{25\pi}{3}$ 1 mark The area of the triangle ABC $A_2 = \frac{1}{2} \times (-1+6) \times \left(1 - \left(1 - \frac{5\sqrt{3}}{2}\right)\right) = \frac{25\sqrt{3}}{4}$ 1 mark

Alternative:
$$A_2 = \frac{1}{2}AB \times AC \times \sin(120^\circ) = \frac{25\sqrt{3}}{4}$$

Therefore, the area of the minor segment
 $A = \frac{25\pi}{3} - \frac{25\sqrt{3}}{4}$ 1 mark

Question 3 (9 marks)

a. i. Solve
$$\frac{dp}{dt} = r p(1 - \frac{p}{k})$$
 by CAS,
1 mark

$$deSolve\left(p'=r \cdot p \cdot \left(1 - \frac{p}{k}\right), t, p\right)$$

$$p = \frac{k \cdot e^{r \cdot t}}{e^{r \cdot t} + k \cdot cI}$$

Therefore
$$p = \frac{k e^{rt}}{e^{rt} + kc}$$
 or $\frac{k e^{rt}}{e^{rt} + A}$, where *c* and *A* are constants.

1 mark

ii. 5000 =
$$\lim_{t \to \infty} \frac{k e^{rt}}{e^{rt} + kc} = \lim_{t \to \infty} \frac{k}{1 + kc e^{-rt}} = k$$

 $k = 5000$

1 mark

1 mark 1 mark

b. From Parts a i) and a ii), $P(t) = \frac{5000 \times e^{rt}}{e^{rt} + 5000c}$ Solve P(0) = 2500 and P(10) = 2600 simultaneously by CAS, $c = \frac{1}{5000}, \quad r = \frac{1}{10} \ln(\frac{13}{12})$ 1 mark

Therefore

$$P(t) = \frac{5000 \times e^{\ln\left(\frac{13}{12}\right)^{\frac{1}{10}}}}{e^{\ln\left(\frac{13}{12}\right)^{\frac{1}{10}} + 5000 \times \frac{1}{5000}}}$$
 1 mark

$$=\frac{5000 \times \left(\frac{13}{12}\right)^{\frac{t}{10}}}{1 + \left(\frac{13}{12}\right)^{\frac{t}{10}}}$$
 1 mark

c. Let
$$u = \frac{dp}{dt} = \frac{1}{10} \ln \left(\frac{13}{12}\right) p \left(1 - \frac{p}{5000}\right)$$

 $\frac{d^2 p}{dt^2} = \frac{du}{dt} = \frac{du}{dp} \times \frac{dp}{dt}$ 1 mark
 $= \frac{1}{10} \ln \left(\frac{13}{12}\right) \left(1 - \frac{p}{2500}\right) \times \frac{1}{10} \ln \left(\frac{13}{12}\right) p \left(1 - \frac{p}{5000}\right)$ 1 mark
 $= \left(\frac{1}{10} \ln \left(\frac{13}{12}\right)\right)^2 p \left(1 - \frac{p}{2500}\right) \left(1 - \frac{p}{5000}\right)$ 1 mark

Question 4 (11 marks)

a.	Solve $r_A(s) =$	$r_B(t)$ for s, t by CAS,	
	At $s \approx 0.37$	Particle A passes (3.72, 2.00)	2 mark
	At $t = 1.11$	Particle B passes (3.72, 2.00)	1 mark

Define
$$ra(t) = \begin{bmatrix} 5 \cdot \cos(2 \cdot t) \\ 3 \cdot \sin(2 \cdot t) \end{bmatrix}$$

Define $rb(t) = \begin{bmatrix} -3+3 \cdot \sec(t) \\ \tan(t) \end{bmatrix}$
 $and 0 \le t \le \frac{5 \cdot \pi}{12}$
 $ra(0.365859)$
 $ra(0.365859)$
 bne
 $s=0.365859$ and $t=1.10804$
 $s=0.365859$ and $t=1.10804$
 $s=0.365859$ and $t=1.10804$
 $s=0.365859$
 $s=0.365859$ and $t=1.10804$
 $s=0.365859$
 $s=0.365859$ and $t=1.10804$
 $s=0.365859$
 $s=0.365859$
 $s=0.365859$ and $t=1.10804$
 $s=0.365859$
 $s=0.365859$

Correct end points	1 mark
Correct directions	1 mark
Correct shapes	1 mark

c.
$$\vec{r}_A(t) = -10 \sin(2t) \, \underbrace{i}_{i} + 6 \cos(2t) \, \underbrace{j}_{i}$$

 $\vec{r}_B(t) = 3 \sec(t) \tan(t) \, \underbrace{i}_{i} + \sec^2(t) \, \underbrace{j}_{i}$ 1 mark

Let θ be the angle between the moving directions when they cross the same point.

$$\cos(\theta) = \frac{r_{A}^{\prime}(0.366) \cdot r_{B}^{\prime}(1.108)}{\left| \frac{r_{A}^{\prime}(0.366)}{r_{B}^{\prime}(1.108)} \right|} = -0.5855$$

$$\theta \approx 126^{\circ} \qquad 1 \text{ mark}$$

d. i. Let $h(t) = \begin{vmatrix} r_A(t) - r_B(t) \end{vmatrix}$	1 mark
Solve $\frac{d}{dt}(h(t)) = 0$ for $t, t \approx 0.703 s$	1 mark
ii. $h(0.7035) \approx 2.11 m$	1 mark

ii. $h(0.7035) \approx 2.11 m$

Question 5 (11marks)

a. Proof

$$ma = -mg - 0.025mv^{2}$$

$$40a = -40g - v^{2}$$

$$40\frac{dv}{dt} = 40v\frac{dv}{dx} = -40g - v^{2}$$

$$\frac{dv}{dx} = -\frac{40g + v^{2}}{40v}$$
1 mark
1 mark

b. Solve
$$x' = -\frac{40v}{40g+v^2}$$
 in CAS, $x = c - 20 \ln(v^2 + 40g)$

$$deSolve \left(x' = \frac{-40 \cdot v}{40 \cdot g + v^2}, v, x \right)$$

$$x = c_1 - 20 \cdot \ln(v^2 + 40 \cdot g)$$
Substitute $x = 0, v = 80$,

$$0 = c - 20 \ln(80^2 + 40g) \Rightarrow c = 20 \ln(6400 + 40g)$$

$$x = 20 \ln(\frac{6400 + 40g}{v^2 + 40g})$$
1 mark
the highest point $v = 0$.
1 mark

c. At the highest point
$$v = 0$$
.
 $x = 20 \ln \left(\frac{6400 + 40 \times 9.8}{0^2 + 40 \times 9.8} \right) \approx 57.04 \, m$
1 mark

d. Solve the differential equation
$$y' = \frac{1000v}{1000 \times 9.8 - v^2}$$
 in CAS
 $y = c - 500 \ln |v^2 - 9800|$ 1 mark

Substitute
$$v = 0, y = 0,$$

 $c = 500 \ln(9800)$ 1 mark

$$y = 500 \ln \left| \frac{1}{9800 - v^2} \right|$$

Solve $120 = 500 \ln \left| \frac{9800}{9800 - v^2} \right|$ for $v = 45.728 \, ms^{-1}$ 1 mark

$$a = \frac{dv}{dt} = g - 0.001v^2$$
 1 mark

$$t = \int_0^{45.728} \frac{1}{9.8 - 0.001\nu^2} dt \approx 5.05 \, s \qquad 1 \text{ mark}$$

e.

Question 6 (8 marks)

a. Let $Y = X_1 + X_2 + \dots + X_{25}$, where $X_i \sim N(200, 5^2)$. Therefore $E(Y) = 25 \times 200 = 5000$, $Var(Y) = 25 \times 5^2 = 625$ 1 mark

$$\Pr(Y > 5050) = 0.02275$$
 1 mark

- **b.** Let \overline{X} be the sample mean of the amount of the liquid. Then $\overline{X} \sim N(200, \left(\frac{5}{5}\right)^2)$. 1 mark $\Pr(\overline{X} > 201) = 0.1587$ 1 mark
- c. Find from CAS

zInterval 5, 197.5, 25, 0.95: stat.results			["Title"	"z Interval"
			"CLower	195.54
			"CUpper	199.46
			"\"	197.5
			"ME"	1.95996
			"n"	25.
			"o"	5.
(1	95.54,	199.46)		

d.
$$H_0: \mu = 200, \quad H_1: \mu < 200$$

e.
$$p = \Pr(\bar{X} < 197.5 | \mu = 200) = 0.00621$$

Fest 200,5,197.5,25,-1: stat.results	Title"	"z Test"
	"Alternate Hyp"	"μ < μ0"
	"z"	-2.5
	"PVal"	0.00621
	"\\ "\\ "\\ "\\ "\\ "\\ "\\ "\\ "\\ "\\	197.5
	"n"	25.
	"σ"	5.
	-	

Conclusion: There is sufficient evidence to reject H_0 .

1 mark