

KILBAHA MULTIMEDIA PUBLISHING	TEL: (03) 9018 5376
PO BOX 2227	FAX: (03) 9817 4334
KEW VIC 3101	kilbaha@gmail.com
AUSTRALIA	http://kilbaha.com.au

IMPORTANT COPYRIGHT NOTICE

- This material is copyright. Subject to statutory exception and to the provisions of the relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Kilbaha Multimedia Publishing.
- The contents of this work are copyrighted. Unauthorised copying of any part of this work is illegal and detrimental to the interests of the author.
- For authorised copying within Australia please check that your institution has a licence from **Copyright Agency Limited**. This permits the copying of small parts of the material, in limited quantities, within the conditions set out in the licence.

Reproduction and communication for educational purposes The Australian Copyright Act 1968 (the Act) allows a maximum of one chapter or 10% of the pages of this work, to be reproduced and/or communicated by any educational institution for its educational purposes provided that educational institution (or the body that administers it) has given a remuneration notice to Copyright Agency Limited (CAL) under the Act.

For details of the CAL licence for educational institutions contact CAL, Level 15, 233 Castlereagh Street, Sydney, NSW, 2000 Tel: (02) 9394 7600 Fax: (02) 9394 7601 Email: <u>info@copyright.com.au</u> Web: <u>http://www.copyright.com.au</u>

• While every care has been taken, no guarantee is given that these answers are free from error. Please contact us if you believe you have found an error.

SECTION 1

ANSWERS

1	Α	В	С	D	Ε
2	Α	В	С	D	E
3	Α	В	С	D	Ε
4	Α	В	С	D	Ε
5	Α	В	С	D	E
6	Α	В	С	D	Ε
7	Α	В	С	D	Ε
8	Α	В	С	D	Ε
9	Α	В	С	D	Ε
10	Α	В	С	D	Ε
11	Α	В	С	D	Ε
12	Α	В	С	D	Ε
13	Α	В	С	D	Ε
14	Α	В	С	D	Ε
15	Α	В	С	D	E
16	Α	В	С	D	Ε
17	Α	В	C	D	Ε
18	Α	В	С	D	Ε
19	Α	В	С	D	Ε
20	Α	B	С	D	Ε

SECTION A

Question 3

Answer D

vertical asymptotes at x = a and x = b and a horizontal asymptote at y = 0

and a maximum turning point at
$$x = \frac{a+b}{2}$$

Answer A

z = 3a - ai is a root, since the polynomial has real co-efficients, so is the conjugate $\overline{z} = 3a + ai$ $z + \overline{z} = 6a$ $z \cdot \overline{z} = a^2 (9 - i^2) = 10a^2$ The polynomial has factors $(z+2a)(z^2 - 6az + 10a^2)$, expanding gives

 $z^{3} - 4az^{2} - 2a^{2}z + 20a^{3}$

RAD 🚺 1.2 2.1 3.1 🕨 SA E2 2018 🕁 expand $((z+2\cdot a)\cdot (z^2-6\cdot a\cdot z+10\cdot a^2))$ $z^{3}-4 \cdot a \cdot z^{2}-2 \cdot a^{2} \cdot z+20 \cdot a^{3}$ $cSolve(z^{3}-4\cdot a\cdot z^{2}-2\cdot a^{2}\cdot z+20\cdot a^{3}=0,z)$ $z=a \cdot (3+i)$ or $z=a \cdot (3-i)$ or $z=-2 \cdot a$ I

http://kilbaha.com.au

Answer E

$$u = -\sqrt{3} - i = 2\operatorname{cis}\left(-\frac{5\pi}{6}\right)$$
$$\overline{u} = -\sqrt{3} + i = 2\operatorname{cis}\left(\frac{5\pi}{6}\right)$$
$$\frac{1}{\overline{u}} = \frac{1}{2}\operatorname{cis}\left(-\frac{5\pi}{6}\right)$$
$$\arg\left(\frac{1}{\overline{u}^{7}}\right) = 7 \times -\frac{5\pi}{6} = -\frac{35\pi}{6}$$
$$\operatorname{Arg}\left(\frac{1}{\overline{u}^{7}}\right) = -\frac{35\pi}{6} + 6\pi = \frac{\pi}{6}$$

 2.1 3.1 4.1 SA E2 2018 - 	RAD 🚺 🗙
u:=-√3 - <i>i</i>	-√3 - <i>i</i>
$\operatorname{angle}\left(\frac{1}{(\operatorname{conj}(u))^7}\right)$	<u>π</u> 6
	\sim

Question 6

Answer D

There are 5 roots, one of the roots is z = i, $z^5 = i^5 = i$ The polynomial must be $z^5 - i = 0$

Question 7 Answer C

If m=1, $\underline{a} = \underline{i} + \underline{j} - \underline{k}$ and $\underline{b} = -\underline{i} - \underline{j} + \underline{k}$, $\underline{a} = -\underline{b}$

then the vectors a and b are parallel, Matilda is correct.

If m = 4, $\underline{a} = 4\underline{i} + 2\underline{j} - 2\underline{k}$ and $\underline{b} = -2\underline{i} - \underline{j} + \underline{k}$, $\underline{a} = -2\underline{b}$

then the vectors a and b are parallel, Nick is correct.

$$a.b = -m\sqrt{m} - \sqrt{m} - \sqrt{m} = -\sqrt{m}(m+2)$$
 but $m > 0$

If m=1 or m=-2 then $a,b \neq 0$ the vectors a and b are not perpendicular,

Yvonne and Zach are both incorrect

Question 8 Answer B

The part of the curve under the *x*-axis becomes positive, and the graph is steeper then $g(x) = \left[f(x) \right]^2$

Answer B

$$a = -2i + 3j + 5k$$
, $|a| = \sqrt{4 + 9 + 25} = \sqrt{38}$

the length of the vector \underline{a} is $\sqrt{38}$, **A.** is true

$$\underline{b} = \underline{i} + \underline{k} , \quad \underline{a} + \underline{b} = -\underline{i} + 3 \underline{j} + 6k$$

$$|\underline{a} + \underline{b}| = \sqrt{1 + 9 + 36} = \sqrt{46} \quad \mathbf{B.} \text{ is false}$$

The scalar resolute of a in the direction b is

$$a.\hat{b} = \frac{a.\hat{b}}{|b|} = \frac{-2+5}{\sqrt{2}} = \frac{3}{\sqrt{2}} = \frac{3\sqrt{2}}{2}$$
 C. is true

The vector resolute of \underline{a} in the direction \underline{b} is $(\underline{a}.\underline{b})\underline{b} = \frac{3\sqrt{2}}{2} \times \frac{1}{\sqrt{2}}(\underline{i}+\underline{k}) = \frac{3}{2}(\underline{i}+\underline{k})$

D. is true. The vector resolute of a perpendicular b is

$$\hat{a} - (\hat{a} \cdot \hat{b})\hat{b} = (-2\hat{i} + 3\hat{j} + 5\hat{k}) - \frac{3}{2}(\hat{i} + \hat{k}) = \frac{1}{2}(-7\hat{i} + 6\hat{j} + 7\hat{k}) \mathbf{E}.$$
 is true.

Question 10

Answer A

f(2) < 2, the slope of the tangent at x = 2 is positive approximately a slope of 45° , so $f'(2) \approx 1$, the second derivative is negative as the function is increasing, so f''(2) < f'(2) < f(2) < 2

Question 11

Answer B

$$a = \frac{1}{2} \left(\sqrt{2}i - j + k \right), \text{ and}$$
$$\sqrt{\left(\frac{\sqrt{2}}{2}\right)^2 + \left(-\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = 1$$

so \underline{a} is a unit vector, $|\underline{a}| = 1$. Using direction cosines, the vector makes an angle of

$$\alpha = \cos^{-1}\left(\frac{\sqrt{2}}{2}\right) = 45^{\circ} \text{ with the } x\text{-axis,}$$
$$\beta = \cos^{-1}\left(-\frac{1}{2}\right) = 120^{\circ} \text{ with the } y\text{-axis, and}$$
$$\chi = \cos^{-1}\left(\frac{1}{2}\right) = 60^{\circ} \text{ with the } z\text{-axis.}$$

 4.1 5.1 6.1 SA E2 2018 → 	DEG 🚺 🗙
$\cos^{-1}\left(\frac{\sqrt{2}}{2}\right)$	45
$\cos^{-1}\left(\frac{-1}{2}\right)$	120
$\cos^{-1}\left(\frac{1}{2}\right)$	60

Question 12	Answer D	
when $x=1$, $y=0$, n	$n=1$, when $y=\pm 1$, $m=\infty$	∞ , when $x = 2$, $m = 0$
is only satisfied by m	$a = \frac{dy}{dx} = \frac{x-2}{y^2 - 1}$	
Question 13	Answer C	
$\frac{dy}{dx} = f(x) = \tan^2(2x)$	() $y_0 = a x_0 = 0 h = \frac{\pi}{12}$	using Euler's Method
$y_1 = y_0 + hf(x_0) = a + hf$	$+\frac{\pi}{12}\tan^2(0) = a$	∢ 4.1 5.1 6.1 ► SA
$y_2 = y_1 + hf(x_1)$ and	$x_1 = \frac{\pi}{12}$	$\operatorname{euler}\left((\operatorname{tan}(2\cdot x))^2, x, y, \cdot\right)$
$= a + \frac{\pi}{12} \tan^2 \left(\frac{\pi}{6}\right) =$	$=a + \frac{\pi}{12} \times \frac{1}{3} = a + \frac{\pi}{36}$	0. 0.261799 1. 1.
$y_3 = y_2 + hf(x_2) \text{ and}$	$1 x_2 = \frac{\pi}{6}$	$1+\frac{5\cdot\pi}{18}$
$=a+\frac{\pi}{36}+\frac{\pi}{12}\tan^2\left(\frac{\pi}{12}\right)$	$\left(\frac{\pi}{3}\right) = a + \frac{\pi}{36} + \frac{\pi}{12} \times 3$	
$=a+\pi\left(\frac{1}{36}+\frac{1}{4}\right)$		
$=a+\frac{5\pi}{18}$		

4.1 5.1	1 6.1 🕨 SA	E2 2018 🗢	RAD 🚺 🗙
euler	$(2 \cdot x)^2, x, y, y$	$\left\{0,\frac{\pi}{4}\right\},1,\frac{\pi}{12}$)
	0. 0.261799 1. 1.	0.523599 1.08727	0.785398 1.87266
$1+\frac{5\cdot\pi}{18}$			1.87266
1			

Answer E

$$y = axe^{-3x}$$

$$\frac{dy}{dx} = a(1-3x)e^{-3x}$$

$$\frac{d^2y}{dx^2} = a(9x-6)e^{-3x}$$

$$\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$$

$$ae^{-3x}[9x-6+b(1-3x)+cx]$$

$$ae^{-3x}[x(9+c-3b)+b-6] = 0$$

$$\Rightarrow b-6=0 \Rightarrow b=6$$

$$9+c-3b=0 \Rightarrow c=9$$

 5.1 6.1 7.1 SA E2 	2018 🗢	RAD 🚺	X
Define $y(x) = a \cdot x \cdot e^{-3 \cdot x}$		Done	
$\frac{d}{dx}(y(x))$	(a-3· a· x)· e	-3• x	l
$\frac{d^2}{dx^2}(y(x))$	3• <i>a</i> • (3• <i>x</i> −2)• e	-3• x	l
$\frac{d^2}{dx^2}(y(x)) + 6 \cdot \frac{d}{dx}(y(x)) +$	9· y(x)	0	

Question 15Answer E

resolving up parallel to plane around the m_1 kg mass (1) $T - m_1 g \sin(\theta) = m_1 a$ resolving downwards around the m_2 kg mass (2) $m_2 g - T = m_2 a$ adding to eliminate the tension in the string, to find the acceleration a, of the system (1) + (2) $m_2 = m_2 a = m_2 a = m_2 a$

(1)+(2)
$$m_2g - m_1g\sin(\theta) = m_1a + m_2a \implies a = \frac{\pi (m_2 - m_1)\pi (\theta)}{m_1 + m_2}$$

Checking the alternatives

$$a > 0 \text{ when } m_2 > m_1 \sin(\theta) \implies \frac{m_2}{m_1} > \sin(\theta)$$

and $a = 0 \text{ when } \frac{m_2}{m_1} = \sin(\theta)$
If $\theta = 30^\circ$ and $\frac{m_2}{m_1} = \sin(30^\circ) = \frac{1}{2}$ then the system is in equilibrium, **A.** is correct
If $\theta = 30^\circ$ $a = \frac{g\left(m_2 - \frac{m_1}{2}\right)}{m_1 + m_2}$ if $\frac{m_2}{m_1} < \frac{1}{2}$ then $a < 0$

therefore the mass m_2 moves upwards, **B**. is correct

If $\theta = 45^{\circ}$ and $\frac{m_2}{m_1} = \sin(45^{\circ}) = \frac{\sqrt{2}}{2}$ then the system is in equilibrium, **C.** is correct If $\theta = 60^{\circ}$ and $\frac{m_2}{m_1} = \sin(60^{\circ}) = \frac{\sqrt{3}}{2}$ then the system is in equilibrium, **D.** is correct If $\theta = 60^{\circ}$ $a = \frac{g\left(m_2 - \frac{\sqrt{3}m_1}{2}\right)}{m_1 + m_2}$ if $\frac{m_2}{m_1} < \frac{\sqrt{3}}{2}$ then a < 0

therefore the mass m_2 moves upwards, **E.** is incorrect

Answer C

$$t = e^{kx} \implies \frac{dt}{dx} = ke^{kx}$$
$$v = \frac{dx}{dt} = \frac{1}{k}e^{-kx} \implies \frac{dv}{dx} = -e^{-kx}$$
$$a = v\frac{dv}{dx} = -\frac{1}{k}e^{-2kx}$$

Question 17

Answer A

$$v = \frac{dx}{dt} = t\sqrt{x} \quad \text{separating the variables}$$
$$\int \frac{1}{\sqrt{x}} dx = \int t \, dt$$
$$2\sqrt{x} = \frac{1}{2}t^2 + c$$
$$\text{when } t = 0 \quad \text{, } x = 4 \quad \Rightarrow 2\sqrt{4} = 0 + c \Rightarrow c = 4$$
$$2\sqrt{x} = \frac{1}{2}t^2 + 4$$
$$\sqrt{x} = \frac{1}{2}t^2 + 2 = \frac{t^2 + 8}{2}$$

$$\sqrt{x} = \frac{1}{4}t^{2} + 2 = \frac{1}{4}t^{2}$$
$$x = \frac{1}{16}(t^{2} + 8)^{2}$$

Question 18

$$X \sim (30,9) , Y \sim (20,4)$$

$$P = 2X + 2Y$$

$$E(P) = 2E(X) + 2E(Y) = 2 \times 30 + 2 \times 20$$

$$E(P) = 100$$

$$Var(P) = 4Var(X) + 4Var(Y) = 4 \times 9 + 4 \times 4$$

$$Var(P) = 52$$

6.1 7.1 8.1 ▶ SA E2 2018 □	RAD 🚺 🗙
deSolve $(x'=t \cdot \sqrt{x} \text{ and } x(0)=4,t,x)$	$\sqrt{x} = \frac{t^2}{4} + 2$
solve $\left(\sqrt{x} = \frac{t^2}{4} + 2, x\right)$	$x = \frac{\left(t^2 + 8\right)^2}{16}$

Question 19 Answer B

$$n = 25$$
, $\bar{X} \sim N\left(10.5, \frac{0.5^2}{25}\right)$ $\sigma_{\bar{X}} = \frac{0.5}{5} = 0.1$
 $\Pr(\bar{X} > 10.55) = \Pr\left(Z > \frac{10.55 - 10.5}{0.1}\right)$
 $= \Pr(Z > 0.5)$
 $= 0.3085$

7.1 8.1 9.1 ▶ SA E2 2018	RAD 🚺 🗙
$\operatorname{normCdf}\left(\frac{10.55-10.5}{\frac{0.5}{\sqrt{25}}}, \infty, 0, 1\right)$	0.308538
	2

 Question 20
 Answer D

 $\overline{x} = 150$, z = 1.96, s = 5, n = 25

 $\overline{x} \pm z \times \frac{s}{\sqrt{n}}$
 $150 \pm 1.96 \times \frac{5}{\sqrt{25}}$

 148.04 - 151.96

END OF SECTION A SUGGESTED ANSWERS

SECTION B

Question 1

a.i.

$$f(x) = \frac{2x^3 + 10x^2 + 4x - 16}{x^3 - 2x^2 - x + 2}$$

$$f(x) = \frac{2(x-1)(x+2)(x+4)}{(x-2)(x-1)(x+1)}$$

$$f(x) = 2 + \frac{2(7x+10)}{x^2 - x - 2} = 2 + \frac{16}{x-2} - \frac{2}{x+1} , \quad x \neq 1$$

the domain $D = R \setminus \{-1, 1, 2\}$

A1

ii. the vertical asymptotes are x = -1 and x = 2the horizontal asymptote is y = 2

iii.
$$f'(x) = \frac{-2(7x^2 + 20x + 4)}{(x^2 - x - 2)^2}$$
 A1

for stationary points f'(x) = 0

$$7x^{2} + 20x + 4 = 0 \implies x = -2.64, -0.22$$

$$f(-2.64) = -0.23 \quad , \quad f(-0.22) = -7.77$$

the stationary points are (-2.64, -0.23) and (-0.22, -7.77) A1

iv.
$$f''(x) = \frac{4(7x^3 + 30x^2 + 12x + 16)}{(x^2 - x - 2)^3}$$
 A1

for inflexion points f''(x) = 0

$$7x^{3} + 30x^{2} + 12x + 16 = 0 \implies x = -4$$

f(-4) = 0 the inflexion point is (-4, 0) A1

b. Note that when x = 1, $\lim_{x \to 1} f(x) = -15$ the point (1, -15) is a point of discontinuity, open circle at (1, -15)Also the graph crosses the horizontal asymptote y = 2when 7x + 10 = 0 at $x = -\frac{10}{7}$ $\left(-\frac{10}{7}, 2\right)$ the graph crosses the *x*-axis when y = 0 at x = -2 and x = -4axial intercepts (-4, 0) (-2, 0)the graph crosses the *y*-axis when x = 0 at y = -8 (0, -8)

correct graph, shape, asymptotes, axial intercepts, point of discontinuity

G3

Define $fI(x) = \frac{2 \cdot x^3 + 10 \cdot x^2 + 4 \cdot x - 16}{x^3 - 2 \cdot x^2 - x + 2}$	Done
<i>f1</i> (0)	-8
$\operatorname{domain}(fI(x), x)$	$x \neq -1$ and $x \neq 1$ and $x \neq 2$
$factor\left(2 \cdot x^{3} + 10 \cdot x^{2} + 4 \cdot x - 16\right)$	$2 \cdot (x-1) \cdot (x+2) \cdot (x+4)$
factor $\left(x^{3}-2 \cdot x^{2}-x+2\right)$	$(x-2)\cdot(x-1)\cdot(x+1)$
$f_{I}(x)$	$\frac{2 \cdot \left(x^2 + 6 \cdot x + 8\right)}{x^2 - x - 2}$
\wedge expand(f1(x))	$\frac{-2}{x+1} + \frac{16}{x-2} + 2$
solve $(f1(x)=2,x)$	$x = \frac{-10}{7}$
$\triangleq \frac{d}{dx}(fI(x))$	$\frac{-2 \cdot \left(7 \cdot x^2 + 20 \cdot x + 4\right)}{\left(x^2 - x - 2\right)^2}$
\bigtriangleup zeros $\left(\frac{d}{dx}(fI(x)), x\right)$	{-2.64,-0.22}
f1({-2.64075,-0.2163})	{-0.23,-7.77}
$\triangleq \frac{d^2}{dx^2}(fI(x))$	$\frac{4 \cdot \left(7 \cdot x^{3} + 30 \cdot x^{2} + 12 \cdot x + 16\right)}{\left(x^{2} - x - 2\right)^{3}}$
$ \Delta \text{ solve}\left(\frac{d^2}{d^2}(fI(x))=0,x\right) $	x=-4

 $T = \{z : \operatorname{Arg}(z+3) = -\frac{3\pi}{4}\}$

a.
$$S = \{z : |z+3+i| = 5\}$$
 let $z = x + yi$
 $|(x+3)+(y+1)i| = 5$
 $\sqrt{(x+3)^2 + (y+1)^2} = 5$
 $(x+3)^2 + (y+1)^2 = 25$ circle centre (-3,-1) radius 5 A1

b.

$$\tan^{-1}\left(\frac{x+3}{y}\right) = -\frac{3\pi}{4}$$
$$\tan\left(-\frac{3\pi}{4}\right) = 1 = \frac{x+3}{y}$$
M1

y = x+3 for x < -3 ray not including the point (-3,0) making

an angle of -135° with the positive end of the real axis. A1

c.
$$R = \{z : |z| = |z+3+3i|\}$$

 $|x+yi| = |(x+3)+(y+3)i|$
 $\sqrt{x^2+y^2} = \sqrt{(x+3)^2+(y+3)^2}$ M1
 $x^2+y^2 = x^2+6x+9+y^2+6y+9$
 $6x+6y+18=0$
 $y = -(x+3)$ line A1
d. $u \in S \cap T$
solving $(x+3)^2 + (y+1)^2 = 25$ and $y = x+3$ for $x < -3$

$$(x+3)^{2} + (x+4)^{2} = 25$$

$$x^{2} + 6x + 9 + x^{2} + 8x + 16 = 25$$

$$2x^{2} + 14x = 0$$

$$2x(x+7) = 0 \quad x < -3$$

$$x = -7 \quad y = -4$$

$$u = -7 - 4i$$
A1

e.
$$v \in S \cap R$$

solving $(x+3)^2 + (y+1)^2 = 25$ and $y = -(x+3)$
 $(x+3)^2 + (-x-2)^2 = 25$
 $x^2 + 6x + 9 + x^2 + 4x + 4 = 25$
 $2x^2 + 10x - 12 = 0$
 $2(x^2 + 5x - 6)$
 $2(x-1)(x+6) = 0$
 $x = -6, 1 \implies y = 3, -4$
 $y = -6 + 3i, 1 - 4i$
A1

g. It is the area of a sector, $\theta = \frac{\pi}{4}$, r = 5

$$A = \frac{1}{2}r^{2}\theta = \frac{1}{2} \times 25 \times \frac{\pi}{4}$$
$$A = \frac{25\pi}{8}$$

© Kilbaha Multimedia Publishing This page must be counted in surveys by Copyright Agency Limited (CAL) http://copyright.com.au http://kilbaha.com.au

G2

$z := x + y \cdot i$	<i>x</i> + <i>y</i> ∙ <i>i</i>
z+3+i =5	$\sqrt{x^2+6\cdot x+y^2+2\cdot y+10} = 5$
$(\sqrt{x^{2}+6\cdot x+y^{2}+2\cdot y+10}=5)^{2}$	$x^{2}+6 \cdot x+y^{2}+2 \cdot y+10=25$
completeSquare $(x^2+6\cdot x+y^2+2\cdot y+10=25, \cdots)$	$\{x,y\}$ $(x+3)^2+(y+1)^2=25$
$\operatorname{angle}(z+3) = \frac{-3 \cdot \pi}{4}$	$\frac{\pi \cdot \operatorname{sign}(y)}{2} - \tan^{-1}\left(\frac{x+3}{y}\right) = \frac{-3 \cdot \pi}{4}$
solve $\left(\operatorname{angle}(z+3) = \frac{-3 \cdot \pi}{4}, y \right)$	y=x+3 and x<-3
$ z = z+3+3\cdot i $	$\sqrt{x^2 + y^2} = \sqrt{x^2 + 6 \cdot x + y^2 + 6 \cdot y + 18}$
$ (\sqrt{x^2 + y^2} = \sqrt{x^2 + 6 \cdot x + y^2 + 6 \cdot y + 18})^2 $	$x^2 + y^2 = x^2 + 6 \cdot x + y^2 + 6 \cdot y + 18$
solve $\left(x^{2}+y^{2}=x^{2}+6\cdot x+y^{2}+6\cdot y+18,y\right)$	y=-(x+3)
solve $((x+3)^2+(y+1)^2=25 \text{ and } y=x+3, \{x,y\})$	x < -3 $x = -7$ and $y = -4$
$\operatorname{zeros}\left(\left z+3+i\right -5\atop \operatorname{angle}(z+3)+\frac{3\cdot\pi}{4}, \{x,y\}\right)\right)$	[-7 -4]
solve $(y=-(x+3) \text{ and } (x+3)^2+(y+1)^2=25, \{x,y\}$,})
	x=-6 and $y=3$ or $x=1$ and $y=-4$
$\operatorname{zeros}\left(\left\{\begin{vmatrix} z+3+i -5\\ z - z+3+3\cdot i\end{vmatrix}, \{x,y\}\right)\right.$	$\begin{bmatrix} 1 & -4 \\ -6 & 3 \end{bmatrix}$
$\operatorname{zeros}\left(\begin{cases} z+3+i -5\\ \operatorname{real}(z)+\operatorname{imag}(z)+3 \end{cases}, \{x,y\} \right)$	$\begin{bmatrix} 1 & -4 \\ -6 & 3 \end{bmatrix}$

when $y = 3t^3 - 14t^2 + 11t = t(t-1)(3t-11) = 0 \implies t = 0, 1$ a. x(0) = 0, x(1) = 9, the width of the cave is 9 metres. A1

b.i.
$$x(t) = t^3 - 8t^2 + 16t$$
 $y(t) = 3t^3 - 14t^2 + 11t$
 $\dot{x} = \frac{dx}{dt} = 3t^2 - 16t + 16$ $\dot{y} = \frac{dy}{dt} = 9t^2 - 28t + 11$ A1
 $\frac{dy}{dt} = \frac{dy}{dt} \frac{dt}{dt} = \frac{\dot{y}}{2} = \frac{9t^2 - 28t + 11}{2}$ A1

$$\frac{dy}{dx} = \frac{dy}{dt}\frac{dt}{dx} = \frac{y}{\dot{x}} = \frac{9t - 28t + 11}{3t^2 - 16t + 16}$$

for turning points $\frac{dy}{dx} = 0 \implies \frac{dy}{dt} = 0$ solving $9t^2 - 28t + 11 = 0$ with 0 < t < 1ii. gives t = 0.4612 and x(0.4612) = 5.776, y(0.4612) = 2.38962, the coordinates of the highest point on the cave is (5.78, 2.39)A1

Define $x l(t) = t^3 - 8 \cdot t^2 + 16 \cdot t$	Done
Define $y_{l}(t) = 3 \cdot t^{3} - 14 \cdot t^{2} + 11 \cdot t$	Done
factor($y I(t)$)	$t \cdot (t-1) \cdot (3 \cdot t-11)$
<i>x1</i> (0)	0
x I(1)	9
$\frac{d}{dt}(x I(t))$	$3 \cdot t^2 - 16 \cdot t + 16$
$\frac{d}{dt}(y I(t))$	$9 \cdot t^2 - 28 \cdot t + 11$
$\frac{\frac{d}{dt}(y I(t))}{\frac{d}{dt}(x I(t))}$	$\frac{9 \cdot t^2 - 28 \cdot t + 11}{3 \cdot t^2 - 16 \cdot t + 16}$
$solve\left(\frac{d}{dt}(y I(t))=0,t\right) 0 < t < 1$	t=0.461238
<i>x1</i> (0.461238)	5.7760≯
<i>y1</i> (0.461238)	2.38962

c.i.
$$y(t) \times \frac{dx}{dt} = (3t^3 - 14t^2 + 11t)(3t^2 - 16t + 16) = 9t^5 - 90t^4 + 305t^3 - 400t^2 + 176t$$
 M1
 $A = \int_0^1 y \frac{dx}{dt} dt = \int_0^1 (9t^5 - 90t^4 + 305t^3 - 400t^2 + 176t) dt$
 $b_5 = 9$, $b_4 = -90$, $b_3 = 305$, $b_2 = -400$, $b_1 = 176$ and $b_0 = 0$ A1

ii.
$$A = \int_{0}^{1} \left(9t^{5} - 90t^{4} + 305t^{3} - 400t^{2} + 176t\right) dt$$
$$A = \frac{173}{12} = 14\frac{5}{12}$$
A1

$$\frac{\exp(y_{1}(t) \cdot \frac{d}{dt}(x_{1}(t)))}{\int_{0}^{1} (9 \cdot t^{5} - 90 \cdot t^{4} + 305 \cdot t^{3} - 400 \cdot t^{2} + 176 \cdot t)} \frac{173}{12}$$

d.i. Solving $x(t_2) - x(t_1) = 2$, $y(t_1) = h$, $y(t_2) = h$ with $0 < t_1 < 1$, $0 < t_2 < 1$ gives h = 2.2746, $t_1 = 0.3549$, $t_2 = 0.5712$ A1 Now y(0.354872) = y(0.57117) = 2.274586Now the triangle *ABS* is an equilateral triangle with all sides 2, so S is $\sqrt{3}$ below *AB*. The distance of S above the ground is $2.274586 - \sqrt{3}$

0.5425 metres.

A1

solve $\begin{pmatrix} x1(t2)-x1(t1)=2, \\ y1(t1)=h, \\ y1(t2)=h \end{pmatrix} 0 < t1 < 1 \text{ and } 0 < t2 < 1 \end{cases}$		
h=2.27459 and $t1=0.354872$ and $t2=0.57117$		
x1(0.354872)	4.71517	
<i>x1</i> (0.57117)	6.71517	
xI(0.57117)-xI(0.354872)	2.	
y1(0.354872)	2.27459	
<i>y1</i> (0.57117)	2.27458	
$2.2745855871646 - \sqrt{3}$	0.542535	
$\frac{2\cdot 400 \cdot \cos(30^\circ)}{9.8}$	70.696	

ii.

Resolving vertically,

$$2T \cos(30^{\circ}) - mg = 0$$
A1
$$m = \frac{2T \cos(30^{\circ})}{g} = \frac{2 \times 400 \times \frac{\sqrt{3}}{2}}{9.8} = 70.696$$
so the largest mass is 69.7 kg.
A1

a.i.
$$\sqrt{x} + \sqrt{y} = \sqrt{a}$$
 using implicit differentiation
 $\frac{d}{dx}(\sqrt{x}) + \frac{d}{dx}(\sqrt{y}) = \frac{d}{dx}(\sqrt{a})$
 $\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}}\frac{dy}{dx} = 0$
 $\frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}}$ at $P(c,d)$ $m_T = -\frac{\sqrt{d}}{\sqrt{c}}$ A1
 $T: y - d = -\frac{\sqrt{d}}{\sqrt{c}}(x-c)$
 $\sqrt{c}(y-d) = -\sqrt{d}(x-c)$
 $y\sqrt{c} + x\sqrt{d} = c\sqrt{d} + d\sqrt{c}$

ii. at A,
$$y = 0 \implies x = \frac{c\sqrt{d} + d\sqrt{c}}{\sqrt{d}} = c + \sqrt{dc}$$
 since $c > 0$ and $d > 0$

at B,
$$x = 0 \implies y = \frac{c\sqrt{d} + d\sqrt{c}}{\sqrt{c}} = d + \sqrt{dc}$$
 since $c > 0$ and $d > 0$
$$A(c + \sqrt{dc}, 0) \quad B(0, d + \sqrt{dc})$$

b.i.
$$x = a\cos^4(t)$$
 and $y = a\sin^4(t)$ where $0 \le t \le \frac{\pi}{2}$
 $\sqrt{x} = \sqrt{a}\cos^2(t)$ and $\sqrt{y} = \sqrt{a}\sin^2(t)$
 $\sin^2(t) + \cos^2(t) = 1$
 $\frac{\sqrt{x}}{\sqrt{a}} + \frac{\sqrt{y}}{\sqrt{a}} = 1$
 $\sqrt{x} + \sqrt{y} = \sqrt{a}$ A1

A1

ii.
$$\dot{x} = \frac{dx}{dt} = -4a\cos^3(t)\sin(t) \text{ and } \dot{y} = \frac{dy}{dt} = 4a\sin^3(t)\cos(t)$$

 $\frac{dy}{dx} = \frac{\dot{y}}{\dot{x}} = \frac{4a\sin^3(t)\cos(t)}{-4a\cos^3\sin(t)} = -\tan^2(t)$
the line $y = -3x$ has a gradient of -3 ,
 $-\tan^2(t) = -3$
 $\tan(t) = \sqrt{3}$, $0 < t < \frac{\pi}{2}$
 $x(\frac{\pi}{3}) = a\cos^4(\frac{\pi}{3}) = a(\frac{1}{2})^4 = \frac{a}{16}$
 $y(\frac{\pi}{3}) = a\sin^4(\frac{\pi}{3}) = a(\frac{\sqrt{3}}{2})^4 = \frac{9a}{16}$
the point is $(\frac{a}{16}, \frac{9a}{16})$
the tangent $y\sqrt{c} + x\sqrt{d} = c\sqrt{d} + d\sqrt{c}$ where $c = \frac{a}{16}$ and $d = \frac{9a}{16}$
 $t(x) = y\frac{\sqrt{a}}{4} + x\frac{3\sqrt{a}}{4} = \frac{a}{16} \times \frac{3\sqrt{a}}{4} + \frac{9a}{16} \times \frac{\sqrt{a}}{4}$
 $y = t(x) = -3x + \frac{3a}{4}$

d.i.
$$\sqrt{y} = \sqrt{a} - \sqrt{x}$$
, $y(x) = (\sqrt{a} - \sqrt{x})^2$, $t(x) = -3x + \frac{3a}{4}$

This tangent crosses the x-axis at $c + \sqrt{dc}$, $x = \frac{a}{4}$ and the y-axis $d + \sqrt{dc}$, $y = \frac{3a}{4}$

$$A = \int_{0}^{\frac{a}{4}} (y(x) - t(x)) dx + \int_{\frac{a}{4}}^{a} y(x) dx = \int_{0}^{\frac{a}{4}} \left(\left(\sqrt{a} - \sqrt{x} \right)^{2} - \left(-3x + \frac{3a}{4} \right) \right) dx + \int_{\frac{a}{4}}^{a} \left(\sqrt{a} - \sqrt{x} \right)^{2} dx$$
$$A = \int_{0}^{\frac{a}{4}} \left(\left(\sqrt{a} - \sqrt{x} \right)^{2} + 3x - \frac{3a}{4} \right) dx + \int_{\frac{a}{4}}^{a} \left(\sqrt{a} - \sqrt{x} \right)^{2} dx$$
A1
ii.
$$A = \frac{7a^{2}}{96}$$
A1

alternatively, the area is the area bounded by C the coordinate axes, minus the area of the triangle formed by the tangent and the coordinate axes.

$$A = \int_{0}^{a} \left(\sqrt{a} - \sqrt{x}\right)^{2} dx - \frac{1}{2} \times \frac{3a}{4} \times \frac{a}{4} = \frac{a^{2}}{6} - \frac{3a^{2}}{32} = \frac{7a^{2}}{96}$$
e. $s = \int_{0}^{\frac{\pi}{2}} \sqrt{\dot{x}^{2} + \dot{y}^{2}} dt$

$$s = \int_{0}^{\frac{\pi}{2}} \sqrt{\left(-4a\cos^{3}(t)\sin(t)\right)^{2} + \left(4a\sin^{3}(t)\cos(t)\right)^{2}} dt}$$
M1
$$s = \int_{0}^{\frac{\pi}{2}} \sqrt{16a^{2}\sin^{2}(t)\cos^{2}(t)\left(\cos^{4}(t) + \sin^{4}(t)\right)} dt}$$
S = $2a\int_{0}^{\frac{\pi}{2}}\sin(2t)\sqrt{\cos^{4}(t) + \sin^{4}(t)} dt = 1.623a$

$$L = 1.623$$
A1
$$\left| \int_{0}^{\frac{a}{4}} \frac{7 \cdot a^{2}}{96} \right| \frac{a}{4}$$

$$\left| \int_{0}^{\frac{a}{4}} \sqrt{16a^{2}\sin^{2}(t)} dx + \int_{\frac{a}{4}}^{\frac{a}{4}} y(x) dx \right| \frac{a}{4}$$

$$\left| \int_{0}^{\frac{a}{4}} \sqrt{16a^{2}\sin^{2}(t)} dx + \int_{0}^{\frac{a}{4}} y(x) dx \right| \frac{a}{4}$$

$$\left| \int_{0}^{\frac{a}{4}} \sqrt{16a^{2}\sin^{2}(t)} dx + \int_{0}^{\frac{a}{4}} y(x) dx \right| \frac{a}{4}$$

© Kilbaha Multimedia Publishing This page must be counted in surveys by Copyright Agency Limited (CAL) http://copyright.com.au http://kilbaha.com.au

$$\ddot{x} = v \frac{dv}{dx} = -g - kv^{2}$$

$$\frac{dv}{dx} = \frac{-(g + kv^{2})}{v}$$
M1
$$\frac{dx}{dv} = \frac{-v}{g + kv^{2}}$$

$$x = \int \frac{-v}{g + kv^{2}} dv$$

$$x = -\frac{1}{2k} \log_{e} \left(g + kv^{2}\right) + c$$
when $x = 0$ $v = \frac{1}{3} \sqrt{\frac{g}{k}} \implies kv^{2} = \frac{g}{9} \implies c = \frac{1}{2k} \log_{e} \left(\frac{10g}{9}\right)$
A1
$$x = -\frac{1}{2k} \log_{e} \left(g + kv^{2}\right) + \frac{1}{2k} \log_{e} \left(\frac{10g}{9}\right) = \frac{1}{2k} \log_{e} \left(\frac{10g}{9(g + kv^{2})}\right)$$
at the top $v = 0$ $x = H = \frac{1}{-1} \log_{e} \left(\frac{10}{10}\right)$
A1

at the top v = 0 $x = H = \frac{1}{2k} \log_e \left(\frac{10}{9}\right)$

b.i.
$$\ddot{x} = \frac{dv}{dt} = -\left(g + kv^2\right)$$

 $\frac{dt}{dv} = \frac{-1}{\left(g + kv^2\right)}$
 $T = \int_{\frac{1}{3}\sqrt{\frac{g}{k}}}^{0} \frac{-1}{\left(g + kv^2\right)} dv = \int_{0}^{\frac{1}{3}\sqrt{\frac{g}{k}}} \frac{1}{\left(g + kv^2\right)} dv$ A1

ii.
$$k = 0.02 = \frac{1}{50}$$
, $g = 9.8$ $\sqrt{\frac{g}{k}} = \sqrt{490} = 7\sqrt{10}$
$$T = \int_{0}^{\frac{7\sqrt{10}}{3}} \frac{1}{9.8 + \frac{v^2}{50}} dv = \int_{0}^{\frac{7\sqrt{10}}{3}} \frac{50}{490 + v^2} dv$$
A1

$$T = \frac{50}{7\sqrt{10}} \left[\tan^{-1} \left(\frac{\nu}{7\sqrt{10}} \right) \right]_{0}^{\frac{7}{3}} = \frac{50}{7\sqrt{10}} \left[\tan^{-1} \left(\frac{7\sqrt{10}}{3 \times 7\sqrt{10}} \right) - \tan^{-1}(0) \right]$$
A1

$$T = \frac{5\sqrt{10}}{7} \tan^{-1} \left(\frac{1}{3}\right)$$
 A1

http://kilbaha.com.au

c.i.
$$H = \frac{1}{2k} \log_e \left(\frac{10}{9} \right) = 25 \log_e \left(\frac{10}{9} \right) = 2.63401$$
$$v^2 = u^2 + 2as$$
$$v = 0 + \sqrt{2 \times 9.8 \times 2.63401}$$
$$v = 7.19 \text{ m/s}$$
A1
ii.
$$s = ut + \frac{1}{2}at^2 \quad s = -2.63401 \quad , a = -9.8 \quad , u = 0$$
$$t = \sqrt{\frac{2 \times 2.63401}{9.8}}$$
$$t = 0.73 \text{ sec}$$

a. Let T be toast
$$T \sim (50,3^2)$$
, G eggs $G \sim (60,5^2)$, B bacon $B \sim (65,8^2)$
A be the total amount
 $A = T1 + T2 + T3 + G1 + G2 + B1 + B2 + B3 + B4$
 $E(A) = 3E(T) + 2E(G) + 4E(B)$
 $= 3 \times 50 + 2 \times 60 + 4 \times 65$
 $= 530$
 $Var(A) = 3Var(T) + 2Var(G) + 4Var(B)$
 $= 3 \times 9 + 2 \times 25 + 4 \times 64$
 $= 333$

$$A \sim (530, 333)$$
, $\Pr(A > 500) = 0.9499$ A1

b.
$$\overline{T} \sim N\left(51, \frac{3}{\sqrt{n}}\right)$$

 $\Pr(\overline{T} > 50) = 0.83 \implies \frac{50-51}{\frac{3}{\sqrt{n}}} = -0.9542$ A1

$$n = (3 \times 0.9542)^2$$

$$n = 8$$
A1

c.
$$\overline{x} = 999$$
, $\sigma = 5$, $z_{0.9} = 1.64485$, $\overline{x} \pm \frac{z\sigma}{\sqrt{n}} = (997.16,1000.84)$ A1

Now 1000.84–997.16 = 3.68, so
$$2 \times \frac{z\sigma}{\sqrt{n}} = 3.68$$
 A1

$$n = \left(\frac{2 \times 1.64485 \times 5}{3.68}\right)^2$$
$$n = 20$$

A1

normCdf(500,∞,530,√333)	0.949911
invNorm(0.17,0,1)	-0.954165
$(3 \cdot 0.954165)^2$	8.19388
invNorm(0.95,0,1)	1.64485
1000.84-997.16	3.68
$\left(\frac{2 \cdot 1.64485 \cdot 5}{3.68}\right)^2$	19.9782

END OF SECTION B SUGGESTED ANSWERS