The Mathematical Association of Victoria

Trial Exam 2018 SPECIALIST MATHEMATICS Written Examination 1

STUDENT NAME _____

Reading time: 15 minutes Writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of Book

Number of questions	Number of questions to be answered	Number of marks
9	9	40

• Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.

• Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 18 pages
- Formula sheet.
- Working space is provided throughout the book.

Instructions

- Write your **name** in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

Answer **all** questions in the spaces provided. Unless otherwise specified, an **exact** answer is required to a question. In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams are **not** drawn to scale. Take the **acceleration due to gravity** to have magnitude $g \text{ ms}^{-2}$ where g = 9.8.

Question 1 (3 marks)

The angle between the vectors $2 \stackrel{\text{i}}{=} m \stackrel{\text{j}}{=} 3\sqrt{2} \stackrel{\text{k}}{k}$, where $m \in R$, and $\stackrel{\text{i}}{=} \sqrt{2} \stackrel{\text{k}}{k}$ is $\cos^{-1}\left(\frac{2}{5}\right)$.

Find all possible values of *m*.

TURN OVER

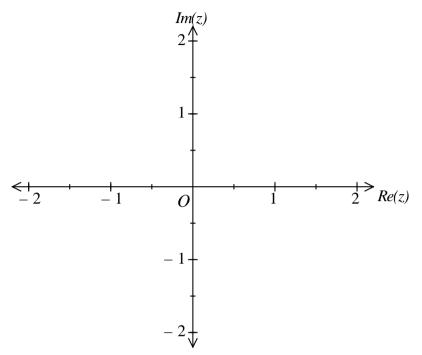
Question 2 (3 marks)

The volume of milk in a 2L carton varies normally with a mean of 2000 ml and a standard deviation of 15 ml. The volume of milk in a 1L carton varies normally with a mean of 1000 ml and a standard deviation of 4 ml.

a. Find the variance of the difference between the volume of a 2L carton of milk and the volume of two 1L cartons of milk.

1 mark

b. A quality control officer suspects that the mean volume of milk in a 1L carton of milk is different to 1000 ml. She collects thirty-six 1L cartons and calculates a C% confidence interval for the mean volume of milk in a 1L carton to be (994.7, 997.3).


The value of C is given by $Pr(-z^* < Z < z^*) = \frac{C}{100}$ where Z is the standard normal random variable. Find the value of z^* .

2 marks

© The Mathematical Association of Victoria, 2018

Question 3 (5 marks)

a. Sketch the graph of $|z - \overline{z} + 1| = 2$, $z \in C$. Label all axes intercepts with their corresponding value of z.

Working space

2 marks

3 marks

b. Consider
$$z = \frac{1+i}{(-\sqrt{3}+i)^3}, z \in C$$
.

Find the principal argument of z in the form $k\pi$, $k \in R$.

Question 4 (3 marks)

Let
$$\operatorname{cosec}(2\theta) = -\frac{13}{12}$$
 where $\pi < 2\theta < \frac{3\pi}{2}$.

TURN OVER

 $\ensuremath{\mathbb{C}}$ The Mathematical Association of Victoria, 2018

Find the value of $sin(\theta)$.		

Find an anti-derivative of $\frac{2x^2+1}{4x^2-4x+3}$.

Question 6 (4 marks)

a. A body of mass 5 kg is moving in a straight line with an acceleration given by $-e^{-2x}$ ms⁻² where x metres is the distance of the body from a fixed origin at time t seconds. The body is initially at the origin and travelling with a speed of 1 ms⁻¹.

Find, in kg ms^{-1} , the magnitude of the momentum of the body when it is 2 m to the right of the origin.

2 marks

TURN OVER

b. Find, in metres, the distance of the body from the origin after 3 seconds.

2	marks

CONTINUES OVER THE PAGE

TURN OVER

Question 7 (5 marks)

Water is poured into a tank whose shape is that of the volume generated when the region bounded by the y-axis and the graph of $y = 3 \arctan(x) - \frac{\pi}{2}$ over the interval $x \in \left[\frac{1}{\sqrt{3}}, \sqrt{3}\right]$ is rotated about the y-

axis. All lengths are measured in metres.

Water is poured into the tank at a constant rate of $k m^3$ per minute.

Write down a definite integral which gives the volume, $V m^3$, of water in the tank when the a. depth of water is *h* metres. 1 mark

Calculate the value of V when the tank is full.	
Give the answer in the form $\frac{a-b}{2}$ where $a, b \in \mathbb{R}^+$.	2 mark
	Calculate the value of <i>V</i> when the tank is full. Give the answer in the form $\frac{a-b}{2}$ where $a, b \in \mathbb{R}^+$.

- **c.** Find in terms of *k* the rate with respect to time at which the depth of water in the tank is
- increasing when $h = \frac{\pi}{4}$. 2 marks

Question 8 (7 marks)

State the maximal domain and the range of $f(x) = \arccos\left(2\sqrt{x}\right)$.	2 m
Find the value of $f'\left(\frac{1}{8}\right)$.	2 m

c. Find the gradient of the tangent to the graph of $\arccos(2\sqrt{x}) - \frac{1}{3}\arcsin(y) = \frac{\pi}{3}$ at the point

Question 9 (6 marks)

a. Find an anti-derivative of $\sin\left(\frac{\pi}{3}t\right)\cos\left(\frac{\pi}{6}t\right)$.

2 marks

b. The velocity of a particle moving relative to an origin at time *t* seconds is given by

$$\mathbf{v}(t) = \frac{3\sqrt{t}}{2 + t\sqrt{t}} \mathbf{i} + \sin\left(\frac{\pi}{3}t\right) \cos\left(\frac{\pi}{6}t\right) \mathbf{j}, \quad t \ge 0$$

where the components are measured in metres per second. The particle is initially at the origin. Find the position of the particle after 8 seconds.

4 marks

END OF QUESTION AND ANSWER BOOK