# **SPECIALIST MATHEMATICS**

## Written examination 1



# **2018 Trial Examination**

## **SOLUTIONS**

### **Question 1**

**a.** 
$$\sin \theta = \frac{1}{\sqrt{1^2 + 7^2}}$$
$$= \frac{1}{\sqrt{50}}$$
$$= \frac{1}{5\sqrt{2}}$$
$$= \frac{\sqrt{2}}{10}$$

**b.** Equation of motion parallel to the plane:  $F - 10g\sin\theta = 10\sqrt{2}$  $F = 10\sqrt{2} + 10g\left(\frac{\sqrt{2}}{10}\right)$  $=\sqrt{2}(10+g)$ 

1 mark

1 mark

1 mark

$$\sin(x)\sin(y) = \frac{1}{2}$$
  
To find y value when  $= \frac{\pi}{4}$ :  
$$\sin\left(\frac{\pi}{4}\right)\sin(y) = \frac{1}{2}$$
$$\frac{1}{\sqrt{2}}\sin(y) = \frac{1}{2}$$
$$\sin(y) = \frac{\sqrt{2}}{2}$$
$$y = \frac{\pi}{4} + 2n\pi \text{ or } \frac{3\pi}{4} + 2n\pi \text{ , } n \in \mathbb{Z}$$
(1 mark)  
(accept  $y = \frac{\pi}{4} \text{ or } \frac{3\pi}{4}$ )

Implicit differentiation (using product rule):  $\cos(x) \sin(y) + \sin(x) \cos(y) \frac{dy}{dx} = 0$ Sub  $x = \frac{\pi}{4}$  and  $y = \frac{\pi}{4}$ :  $\cos\left(\frac{\pi}{4}\right) \sin\left(\frac{\pi}{4}\right) + \sin\left(\frac{\pi}{4}\right) \cos\left(\frac{\pi}{4}\right) \frac{dy}{dx} = 0$   $\frac{1}{2} + \frac{1}{2} \frac{dy}{dx} = 0$   $\frac{dy}{dx} = -1$ (1 mark) Sub  $x = \frac{\pi}{4}$  and  $y = \frac{3\pi}{4}$ :  $\cos\left(\frac{\pi}{4}\right) \sin\left(\frac{3\pi}{4}\right) + \sin\left(\frac{\pi}{4}\right) \cos\left(\frac{3\pi}{4}\right) \frac{dy}{dx} = 0$   $\frac{1}{2} - \frac{1}{2} \frac{dy}{dx} = 0$   $\frac{dy}{dx} = 1$ (1 mark)

So the possible values of the gradient are 1 or -1

#### **Question 3**

$$z^{3} = (1 - i)^{6}$$

$$z^{3} = \left(\sqrt{2}\operatorname{cis}\left(\frac{-\pi}{4}\right)\right)^{6}$$

$$z^{3} = 2^{3}\operatorname{cis}\left(\frac{-6\pi}{4} + 2\pi k\right), k \in \mathbb{Z}$$

$$z^{3} = 2^{3}\operatorname{cis}\left(\frac{-3\pi}{2}\right), \quad z^{3} = 2^{3}\operatorname{cis}\left(\frac{\pi}{2}\right), \quad z^{3} = 2^{3}\operatorname{cis}\left(\frac{5\pi}{2}\right)$$

$$z = 2\operatorname{cis}\left(\frac{-\pi}{2}\right), \quad z = 2\operatorname{cis}\left(\frac{\pi}{6}\right), \quad z = 2\operatorname{cis}\left(\frac{5\pi}{6}\right) \quad (1 \text{ mark})$$

$$z = -2i \quad , \quad z = \sqrt{3} + i \quad , \quad z = -\sqrt{3} + i \quad (1 \text{ mark})$$

**a.** 
$$\overrightarrow{AQ} = \overrightarrow{AO} + \overrightarrow{OQ}$$
  
=  $-a + \frac{1}{3}b$  (1 mark)

**b.** 
$$\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP}$$
  
 $= a + \frac{1}{2}\overrightarrow{AB}$   
 $= a + \frac{1}{2}(-a + b)$   
 $= \frac{1}{2}a + \frac{1}{2}b$  (1 mark)

**c.** 
$$\overrightarrow{AX} = k\overrightarrow{AQ}$$
  
=  $k(-a + \frac{1}{3}b)$   
=  $-ka + \frac{1}{3}kb$  (1 mark)

Also  $\overrightarrow{AX} = \overrightarrow{AO} + \overrightarrow{mOP}$  for some  $m \in R$  $= -a + m(\frac{1}{2}a + \frac{1}{2}b)$   $= (\frac{1}{2}m - 1)a + \frac{1}{2}mb$ 

Equating the two vectors, we have:

$$-k\underline{a}_{\sim} + \frac{1}{3}k\underline{b}_{\sim} = \left(\frac{1}{2}m - 1\right)\underline{a}_{\sim} + \frac{1}{2}m\underline{b}_{\sim}$$

Because a and b are linearly independent, we can equate a and b components:

$$-k = \frac{1}{2}m - 1 \dots (1)$$
  
and  $\frac{1}{3}k = \frac{1}{2}m \dots (2)$ 

Equation (2) gives  $k = \frac{3}{2}m$ , Then equation (1) gives:  $-\frac{3}{2}m = \frac{1}{2}m - 1$   $m = \frac{1}{2}$ So  $k = \frac{3}{2} \times \frac{1}{2}$  $k = \frac{3}{4}$  (1 mark)

(1 mark)

a.



| Endpoints labelled                   | (1 mark) |
|--------------------------------------|----------|
| Graph shape & position of intercepts | (1 mark) |

b. Volume = 
$$\pi \int_{\frac{\pi}{2}}^{\frac{\pi}{6}} x^2 dy$$
  
=  $\pi \int_{\frac{\pi}{2}}^{\frac{\pi}{6}} \left(\frac{1}{2} - \sin(y)\right)^2 dy$  (1 mark)  
=  $\pi \int_{\frac{\pi}{2}}^{\frac{\pi}{6}} \left(\frac{1}{4} - \sin(y) + \sin^2(y)\right) dy$   
=  $\pi \int_{\frac{\pi}{2}}^{\frac{\pi}{6}} \left(\frac{1}{4} - \sin(y) + \frac{1}{2} - \frac{1}{2}\cos(2y)\right) dy$  (1 mark)  
=  $\pi \int_{\frac{\pi}{2}}^{\frac{\pi}{6}} \left(\frac{3}{4} - \sin(y) - \frac{1}{2}\cos(2y)\right) dy$   
=  $\pi \left[\frac{3y}{4} + \cos(y) - \frac{1}{4}\sin(2y)\right]_{-\frac{\pi}{2}}^{\frac{\pi}{6}}$   
=  $\pi \left(\left(\frac{\pi}{8} + \frac{\sqrt{3}}{2} - \frac{1}{4} \times \frac{\sqrt{3}}{2}\right) - \left(\frac{-3\pi}{8} + 0 - 0\right)\right)$   
=  $\pi \left(\frac{\pi}{8} + \frac{4\sqrt{3}}{8} - \frac{\sqrt{3}}{8} + \frac{3\pi}{8}\right)$   
=  $\frac{\pi^2}{2} + \frac{3\sqrt{3\pi}}{8}$  (cubic units) (1 mark)

**a.** *D* is normally distributed with  

$$E(D) = E(A) - E(B)$$
  
 $= 14.7 - 13.7$   
 $= 1$   
and  $Var(D) = Var(A) + Var(B)$   
 $= 0.8^2 + 0.6^2$   
 $= 1$   
so  $SD(D) = 1$  (1 mark)

For the Team A player to be faster: Pr(D < 0) = Pr(Z < -1) $\approx 0.16$ 

(1 mark)

**b.** For a random sample of four players from Team A:  $F(\bar{A}) = 14.7$ 

$$E(A) = 14.7$$
  
 $SD(\bar{A}) = \frac{0.8}{\sqrt{4}}$   
 $= 0.4$ 

For a random sample of four players from Team B:

$$E(\bar{B}) = 13.7$$
  

$$SD(\bar{B}) = \frac{0.6}{\sqrt{4}}$$
  

$$= 0.3$$
  
Now let  $\bar{D} = \bar{A} - \bar{B}$   

$$E(\bar{D}) = 14.7 - 13.7$$
  

$$= 1$$
  
and  $Var(\bar{D}) = 0.4^{2} + 0.3^{2}$   

$$= 0.25$$
  
So  $SD(\bar{D}) = 0.5$  (1 mark)

Alternatively, take the variable D from part **a**, then for a sample of four differences:

$$E(D) = E(D)$$

$$= 1$$
and  $SD(\overline{D}) = \frac{SD(D)}{\sqrt{2}}$ 

$$= 0.5$$

$$Pr(\overline{D} < 0) = Pr(Z < -2)$$

$$\approx 0.025$$
(1 mark)

$$\frac{dy}{dx} = \frac{y-2}{1+4x^2}$$
Using separation of variables:  

$$\int \frac{1}{y-2} dy = \int \frac{1}{1+4x^2} dx$$
(1 mark)

$$\log_e |y - 2| = \frac{1}{2} \tan^{-1}(2x) + c \tag{1 mark}$$

Method 1. Substitute initial condition before rearranging:

Substitute 
$$x = -\frac{1}{2}$$
,  $y = 1$   
 $\log_{e} |-1| = \frac{1}{2} \tan^{-1}(-1) + c$   
 $0 = \frac{-\pi}{8} + c$   
 $c = \frac{\pi}{8}$  (1 mark)

$$\log_e(2 - y) = \frac{1}{2}\tan^{-1}(2x) + \frac{\pi}{8}$$
(1 mark)  
(LHS is  $\log_e(2 - y)$  because  $y < 2$  in the initial condition)

$$y = 2 - e^{\left(\frac{1}{2}\tan^{-1}(2x) + \frac{\pi}{8}\right)}$$
 (1 mark)

### Method 2. Rearrange before substituting initial condition:

$$\log_{e}|y-2| = \frac{1}{2}\tan^{-1}(2x) + c$$
  

$$y-2 = \pm e^{\frac{1}{2}\tan^{-1}(2x) + c}$$
  

$$y = 2 + Ae^{\frac{1}{2}\tan^{-1}(2x)}$$
 (1 mark)

Substitute 
$$x = -\frac{1}{2}$$
,  $y = 1$   
 $1 = Ae^{\frac{1}{2}\tan^{-1}(-1)} + 2$   
 $-1 = Ae^{\frac{-\pi}{8}}$   
 $A = -e^{\frac{\pi}{8}}$  (1 mark)  
 $y = 2 - e^{\frac{\pi}{8}}e^{\frac{1}{2}\tan^{-1}(2x)}$   
 $y = 2 - e^{(\frac{1}{2}\tan^{-1}(2x) + \frac{\pi}{8})}$  (1 mark)

$$a. \quad f(x) = \frac{\sqrt{x}}{x-2}$$

Using the quotient rule:

$$f'(x) = \frac{\frac{1}{2\sqrt{x}}(x-2) - \sqrt{x}}{(x-2)^2}$$

$$= \frac{(x-2) - 2x}{2\sqrt{x}(x-2)^2}$$

$$= \frac{-x-2}{2\sqrt{x}(x-2)^2}$$
(1 mark)

For stationary points:

$$0 = \frac{-x-2}{2\sqrt{x}(x-2)^2}$$

This has no solutions, because numerator is 0 when x = -2 only, but the denominator is not defined for x < 0. So there are no stationary points. (1 mark)

**b.** 
$$f'(x) = \frac{-x-2}{2\sqrt{x}(x-2)^2}$$

Using the quotient and product rules:

$$f''(x) = \frac{-2\sqrt{x}(x-2)^2 - (-x-2)(\frac{1}{\sqrt{x}}(x-2)^2 + 4\sqrt{x}(x-2))}{4x(x-2)^4}$$
(1 mark)

Multiply by  $\sqrt{x}$  on numerator and denominator:

$$f''(x) = \frac{-2x(x-2)^2 - (-x-2)((x-2)^2 + 4x(x-2))}{4x\sqrt{x}(x-2)^4}$$

Divide by (x - 2) on numerator and denominator:

$$f''(x) = \frac{-2x(x-2)-(-x-2)((x-2)+4x)}{4x\sqrt{x}(x-2)^3}$$
$$= \frac{-2x^2+4x+(x+2)(5x-2)}{4x\sqrt{x}(x-2)^3}$$
$$= \frac{-2x^2+4x+5x^2+8x-4}{4x\sqrt{x}(x-2)^3}$$
$$= \frac{3x^2+12x-4}{4x\sqrt{x}(x-2)^3}$$
(1 mark)

f''(x) = 0 when numerator = 0  $3x^{2} + 12x - 4 = 0 \qquad (1 \text{ mark})$   $x^{2} + 4x - \frac{4}{3} = 0$   $(x + 2)^{2} - \frac{16}{3} = 0$   $x + 2 = \pm \frac{4}{\sqrt{3}}$  $x = -2 \pm \frac{4\sqrt{3}}{3}$ 

We require x > 0, so the only point of inflection occurs at

$$x = -2 + \frac{4\sqrt{3}}{3} \tag{1 mark}$$

To verify that the concavity changes at  $x = -2 + \frac{4\sqrt{3}}{3}$  (which is between 0 and 2) we can notice that  $f''(x) = \frac{3x^2 + 12x - 4}{4x\sqrt{x}(x-2)^3}$  has a negative denominator for all  $x \in (0,2)$ , but the numerator changes sign at  $x = -2 + \frac{4\sqrt{3}}{3}$ , so f''(x) changes sign at  $x = -2 + \frac{4\sqrt{3}}{3}$ .

#### **Question 9**

**a.** 
$$\int \frac{\log_{e}|x-1|}{x-1} dx$$
  

$$= \int u \, du \qquad \text{where } u = \log_{e}|x-1| \ , \ \frac{du}{dx} = \frac{1}{x-1}$$
  

$$= \frac{1}{2} u^{2} + c$$
  

$$= \frac{1}{2} (\log_{e}|x-1|)^{2} \qquad (1 \text{ mark})$$
  
(where  $c = 0$ )

**b.** 
$$\frac{\log_{e}|x-1|}{x-1} = 0$$
$$\log_{e}|x-1| = 0$$
$$x-1 = \pm 1$$
$$x = 0 \text{ or } x = 2$$
(1 mark)

c. Area = 
$$\int_0^{-2} \frac{\log_e |x-1|}{x-1} dx$$

(reverse the terminals because the area is below the x axis)

Area = 
$$\left[\frac{1}{2} (\log_e |x - 1|)^2\right]_0^{-2}$$
  
=  $\frac{1}{2} (\log_e 3)^2 - \frac{1}{2} (\log_e 1)^2$   
=  $\frac{1}{2} (\log_e 3)^2$  (1 mark)

d.

$$\int_{0}^{a} \frac{\log_{e}|x-1|}{x-1} dx = \int_{2}^{k} \frac{\log_{e}|x-1|}{x-1} dx$$

$$\left[\frac{1}{2} (\log_{e}|x-1|)^{2}\right]_{0}^{a} = \left[\frac{1}{2} (\log_{e}|x-1|)^{2}\right]_{2}^{k}$$

$$\frac{1}{2} (\log_{e}|a-1|)^{2} - \frac{1}{2} (\log_{e}1)^{2} = \frac{1}{2} (\log_{e}|k-1|)^{2} - \frac{1}{2} (\log_{e}1)^{2}$$

$$\frac{1}{2} (\log_{e}|a-1|)^{2} = \frac{1}{2} (\log_{e}|k-1|)^{2}$$

$$(\log_{e}(1-a))^{2} = (\log_{e}(k-1))^{2}$$

$$(1 \text{ mark})$$

$$\log_{e}(1-a) = \log_{e}(k-1) \text{ or } \log_{e}(1-a) = -\log_{e}(k-1)$$

$$1-a = k-1 \text{ or } 1-a = \frac{1}{k-1}$$

$$k = 2-a \text{ or } k = 1 + \frac{1}{1-a}$$

$$(2 \text{ marks})$$

$$(1 \text{ for each solution})$$