SPECIALIST MATHEMATICS

Written examination 2

2018 Trial Examination

SOLUTIONS

SECTION A: Multiple-choice questions (1 mark each)

Question 1

Answer: **B**

Explanation:

The range for y = tan⁻¹ x is $\left(\frac{-}{\epsilon}\right)$ $\frac{-\pi}{2}, \frac{\pi}{2}$ $\frac{\pi}{2}$ (which is given on the VCAA formula sheet).

 $y = \tan^{-1}(x + 1) - \frac{\pi}{4}$ $\frac{\pi}{4}$ has been translated $\frac{\pi}{4}$ down, so the range is $\left(\frac{-1}{2} \right)$ $\frac{3\pi}{4}$, $\frac{3\pi}{4}$ $\frac{3\pi}{4}$

Question 2

Answer: **D**

Explanation:

Options A to D are all ellipses, but the direction of motion for options A to C is anticlockwise. Only option D gives motion in a **clockwise** direction.

This can be verified by substituting some values for t , or (preferably) by sketching the parametric equations using CAS.

Answer: **A**

Explanation:

$$
\frac{w^2}{\overline{w}} = \frac{(1-i)^2}{1+i}
$$
\n
$$
= \frac{(\sqrt{2} \text{cis}\left(\frac{-\pi}{4}\right))}{\sqrt{2} \text{cis}\left(\frac{\pi}{4}\right)}
$$
\n
$$
= \frac{2 \text{cis}\left(\frac{-\pi}{4}\right)}{\sqrt{2} \text{cis}\left(\frac{\pi}{4}\right)}
$$
\n
$$
= \sqrt{2} \text{cis}\left(\frac{-\pi}{2} - \frac{\pi}{4}\right)
$$
\n
$$
= \sqrt{2} \text{cis}\left(\frac{-3\pi}{4}\right)
$$

This can also be evaluated quickly on CAS:

TI-nspire:

Question 4

Answer: **E**

Explanation:

$$
|z - 3i| = 2|z + 3|
$$

\n
$$
|x + yi - 3i| = 2|x + yi + 3|
$$

\n
$$
\sqrt{x^2 + (y - 3)^2} = 2\sqrt{(x + 3)^2 + y^2}
$$

\n
$$
x^2 + (y - 3)^2 = 4((x + 3)^2 + y^2)
$$

\n
$$
x^2 + y^2 - 6y + 9 = 4x^2 + 24x + 4y^2 + 36
$$

Rearranging and completing the square gives: $(x + 4)^2 + (y + 1)^2$

TI-nspire:

Question 5

Answer: **D**

Explanation:

$$
f(z) = z5 - az3 - 2z2 + 2a
$$

= z³(z² - a) - 2(z² - a)
= (z³ - 2)(z² - a)

Now $(z^3 - 2)$ has two non-real roots (and one real root), and $(z^2 - a)$ will have a maximum of two non-real roots (if $a < 0$).

So the maximum number of non-real roots is four.

Question 6

Answer: **C**

Explanation:

 $g'(x) =$ $g''(x) = \frac{1}{\sqrt{2}}$ $\sqrt{1-x^2}$ $g''(x) > 0$ for all $x \in (-1,1)$

So the function g is never concave down.

Answer: **D.**

Explanation:

In option D, $f'(1) < 0$ and $f''(1) < 0$.

Therefore, using the tangent to the original function at $f(1)$ would be overestimate $f(1.1)$. See graphs of $y = f'(x)$ and $y = f(x)$ for option D below:

Question 8

Answer: **A**

Explanation:

Let $u=e^x$ $du\,$ Then $= e^x$ \overline{dx} and e^{x}

So
$$
\int_0^1 e^{2x} \sqrt{e^x + 1} dx
$$

=
$$
\int_{e^0}^{e^1} u \times \frac{du}{dx} \times \sqrt{u + 1} dx
$$

=
$$
\int_1^e u \sqrt{u + 1} du
$$

Answer: **D**

Explanation:

Let the area of the equilateral triangle with height h be A .

Using trigonometry, the "base" of the equilateral triangle must be $2 \times \frac{h}{\sqrt{h}}$ $\frac{h}{\tan(60^\circ)} = \frac{2}{\sqrt{4}}$ $\sqrt{3}$

So
$$
A = \frac{1}{2} \times \frac{2h}{\sqrt{3}} \times h
$$

= $\frac{h^2}{\sqrt{3}}$

And the volume of the prism is: $V = A \times 2$ $=$ $\frac{2}{1}$ $\sqrt{3}$ So $\frac{d}{d}$ $\frac{dV}{dh} = \frac{4}{\sqrt{2}}$ $\sqrt{3}$

Now,
$$
\frac{dV}{dt} = \frac{1}{2}
$$
 and
\n $\frac{dh}{dt} = \frac{dh}{dV} \times \frac{dV}{dt}$
\n $= \frac{\sqrt{3}}{4h} \times \frac{1}{2}$
\n $= \frac{\sqrt{3}}{4}$ when $h = \frac{1}{2}$

Answer: **E**

Explanation:

Graph each pair of functions on CAS, trying a few different values for k (or using a slider).

Option A is incorrect, because $y = \sec(x)$ does not intersect with $y = \csc(x - \frac{\pi}{a})$ $\frac{\pi}{2}$ Option B is incorrect, because $y = \sec(x)$ does not intersect with $y = \cot(x - \frac{\pi}{2})$ $\frac{\pi}{2}$) Option C is incorrect, because $y = \sec(x)$ does not intersect with $y = \cos(x - \frac{\pi}{3})$ $\frac{\pi}{2}$) Option D is incorrect, because $y = \sec(x)$ does not intersect with $y = \cos^{-1}(x + \frac{\pi}{6})$ $\frac{\pi}{2}$ Option E is correct, because $y = \sec(x)$ does intersect with $y = \tan^{-1}(x + k)$ for all

Question 11

Answer: **E**

Explanation:

When = 0, $\frac{d}{d}$ $\frac{dy}{dx}$ is undefined (this is satisfied by all options) When = 0, $\frac{d}{d}$ $\frac{dy}{dx} = 0$ (this is satisfied by all options) When $x > 0$ and > 0 , $\frac{d}{d}$ $\frac{dy}{dx}$ < 0 (this is only satisfied by options B and E) When $x > 0$ and < 0 , $\frac{d}{d}$ $\frac{dy}{dx}$ < 0 (this is only satisfied by option E)

To check, we can sketch option E using the CAS:

TI-nspire:

Answer: **C**

Explanation:

Let $u = 3i \sim$ and $v = i + k$, then the resolute of u parallel to v is $(u \cdot \hat{v}) \hat{v}$ Now, $\hat{v} = \frac{1}{\sqrt{2}}(i+k)$ $\sim \sqrt{2}$ \sim \sim and $\underline{u} \cdot \hat{v} = \frac{3}{\sqrt{2}}$ $\sqrt{2}$ so $\left(u \cdot \hat{v}\right) \hat{v} = \frac{3}{\sqrt{2}}$ $\frac{3}{\sqrt{2}} \times \frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}(i+k)$ $=\frac{3}{2}$ $\frac{3}{2}i + \frac{3}{2}$ $\frac{3}{2}k$

Question 13

Answer: **A**

Explanation:

The condition $\overrightarrow{AB} \cdot \overrightarrow{AD} \neq 0$ means that vertex A is not a right angle. $\overrightarrow{AB} + \overrightarrow{BC}$ and $\overrightarrow{BC} + \overrightarrow{CD}$ are the diagonals of the quadrilateral. The condition $(\overrightarrow{AB} + \overrightarrow{BC}) \cdot (\overrightarrow{BC} + \overrightarrow{CD}) = 0$ means that the diagonals are perpendicular.

Drawing a diagram, we can see that the quadrilateral could be a rhombus, but not a square.

Answer: **D**

Explanation:

The vectors α , β and α must be linearly independent.

This means that there must **not** be constants p and q such that $p\underset{\sim}{a} + qb = c$. We could test each option, but if we notice that option A is $\alpha + b$ and option B is $\alpha - b$, we can rule these out and start testing from option C:

Solving $p\left(\frac{i}{2}\right)$ \sim $+\frac{k}{z}$ + $q\left(3i+$ \sim $+\frac{k}{\gamma}$) = $\frac{i}{\gamma}$ + \sim $-\frac{k}{\gamma}$ gives $p = -2$ and $q = 1$ (vectors are linearly dependent).

Try option D:

Solving $p\left(\frac{i}{2}\right)$ \sim $+\frac{k}{z}$ + $q\left(3i+$ \sim $+\frac{k}{\gamma}$) = -2*i* + \sim $+\frac{k}{\gamma}$ gives no solutions (vectors are linearly independent).

TI-nspire:

Question 15

Answer: **B**

Explanation:

$$
a = \sqrt{x - 3}
$$

\n
$$
\frac{d}{dx} \left(\frac{1}{2}v^2\right) = \sqrt{x - 3}
$$

\n
$$
\frac{1}{2}v^2 = \frac{2}{3}(x - 3)^{\frac{3}{2}} + c
$$

\nSubstituting $x = 7$, $v = 1$ and solving gives $c = -\frac{29}{6}$
\n
$$
\frac{1}{2}v^2 = \frac{2}{3}(x - 3)^{\frac{3}{2}} - \frac{29}{6}
$$

6 Substituting $x = 12$ and solving gives $v = \frac{\sqrt{2}}{6}$ 3 (note that $v > 0$ because of the initial condition)

Answer: **B**

Explanation:

Resolving forces parallel to the plane, given that the objects are in equilibrium, we have: $M_1 \sin(45^\circ) = M_2 \sin(30^\circ)$

$$
\frac{\sqrt{2}}{2}M_1 = \frac{1}{2}M_2
$$

\n
$$
\frac{M_1}{M_2} = \frac{1}{\sqrt{2}}
$$

\n
$$
\frac{M_1}{M_2} = \frac{\sqrt{2}}{2}
$$

\nSo $M_1: M_2 = \sqrt{2} : 2$

As a logical check, we can notice that as M_1 is on a steeper slope, M_2 must be the heavier object to keep the system in equilibrium.

Question 17

Answer: **D**

Explanation:

Let *i* be a unit vector in the direction of the 5*N* force, and be a unit vector perpendicular to

 \sim

the $5N$ force (90° anti-clockwise). We can then represent the net force as:

$$
(5 + 3\cos(130^\circ) + 4\cos(-140^\circ))\underline{i} + (3\sin(130^\circ) + 4\sin(-140^\circ))\underline{j}
$$

\approx 0.008i - 0.273j

which gives a direction between the $4N$ and $5N$ force

Question 18

Answer: **A**

Explanation:

The sample mean must be in the centre of the confidence interval, so $\bar{x} = \frac{3}{2}$ $\frac{+41.56}{2}$ = For a 99% confidence interval, $z = 2.5758$ (using the standard normal $Z \sim N(0,1)$ to solve $Pr(Z < z) = 0.995$ for z)

Now,
$$
38.45 + 2.5758 \times \frac{s}{\sqrt{50}} = 41.58
$$

 $s = 8.59$

Answer: **D**

Explanation:

$$
SD(\bar{X}) = \frac{\sigma}{\sqrt{n}}\n= \frac{15}{\sqrt{25}}\n= 3
$$

Calculating the (two-tailed) p values for each option:

A.
$$
\bar{x} = 107
$$
, $p = 2 \times \Pr\left(Z < \frac{107 - 120}{3}\right) \approx 0.00001$
\n**B.** $\bar{x} = 109$, $p = 2 \times \Pr\left(Z < \frac{109 - 120}{3}\right) \approx 0.0002$
\n**C.** $\bar{x} = 111$, $p = 2 \times \Pr\left(Z < \frac{111 - 120}{3}\right) \approx 0.003$
\n**D.** $\bar{x} = 113$, $p = 2 \times \Pr\left(Z < \frac{113 - 120}{3}\right) \approx 0.020$
\n**E.** $\bar{x} = 115$, $p = 2 \times \Pr\left(Z < \frac{115 - 120}{3}\right) \approx 0.096$

Option D is the only option with a p value between 0.01 and 0.05

Question 20

Answer: **D**

Explanation:

The distance the ball has travelled is given by: $X = Ut + \frac{1}{2}$ $\frac{1}{2}at^2$, where $U \sim N(5, 0.5^2)$ and $-0.1 = 0.1a$ $a = -1$ So X = $Ut - \frac{1}{3}$ $\frac{1}{2}t^2$, and after 2 seconds: $X = 2U - 2$ For the ball to travel at least 10m, $2U - 2 > 10$

 $U > 6$ Using the normal random variable $U \sim N(5, 0.5^2)$:

 $Pr(U > 6) = 0.023$

SECTION B: Extended response questions

Question 1

a. Using CAS:

$$
f'(x) = \frac{-2x}{(x-1)^3}
$$
 (1 mark)

For stationary points: $f'(x) = 0$ $\mathbf{x} = 0$ Coordinates are $(0, -1)$ (1 mark)

b.
$$
f''(x) = \frac{2(2x+1)}{(x-1)^4}
$$
 (1 mark)

For points of inflection:
\n
$$
f''(x) = 0
$$

\n $x = -\frac{1}{2}$
\nCoordinates are $\left(-\frac{1}{2}, -\frac{8}{9}\right)$

) (1 mark)

c.

d.
$$
f(x) = \frac{2}{(x-1)} + \frac{1}{(x-1)^2}
$$
 (1 mark)
(Using the 'expand' function on CAS)

e. *f* is below the *y* axis in the required interval.
\nArea =
$$
\int_{\frac{1}{2}}^{-2} \frac{2}{(x-1)} + \frac{1}{(x-1)^2} dx
$$
\n=
$$
2 \log_e 6 - \frac{5}{3}
$$
 square units (1 mark)

a.
$$
z^5 = 32
$$

\n $= 2^5 \text{cis}(0 + 2k\pi), \quad k \in \mathbb{Z}$
\n $z = 2 \text{cis}(\frac{2k\pi}{5}), \quad k \in \mathbb{Z}$
\n $= 2 \text{cis}(0), \quad 2 \text{cis}(\frac{2\pi}{5}), \quad 2 \text{cis}(\frac{4\pi}{5}), \quad 2 \text{cis}(\frac{6\pi}{5}), \quad 2 \text{cis}(\frac{8\pi}{5})$

d. Method 1 – Geometrically

Notice that the required line is the perpendicular bisector of z_2 and z_3 , Which will also pass through the origin and z_5 . (1 mark)

This line has equation
$$
y = mx
$$
, where the gradient $m = \frac{\sin(\frac{8\pi}{5})}{\cos(\frac{8\pi}{5})}$

$$
y = \frac{-1}{4}x(\sqrt{5} + 1)\sqrt{2(\sqrt{5} + 5)}
$$
(1 mark)

Method 2– Algebraically	
$\left z - 2 \operatorname{cis} \left(\frac{2\pi}{5} \right) \right = \left z - 2 \operatorname{cis} \left(\frac{4\pi}{5} \right) \right $	(1 mark)
$\left x + yi - 2 \operatorname{cos} \left(\frac{2\pi}{5} \right) - 2 i \operatorname{sin} \left(\frac{2\pi}{5} \right) \right = \left x + yi - 2 \operatorname{cos} \left(\frac{4\pi}{5} \right) - 2 i \operatorname{sin} \left(\frac{4\pi}{5} \right) \right $	
$\left(x - 2 \operatorname{cos} \left(\frac{2\pi}{5} \right) \right)^2 + \left(y - 2 \operatorname{sin} \left(\frac{2\pi}{5} \right) \right)^2 = \left(x - 2 \operatorname{cos} \left(\frac{4\pi}{5} \right) \right)^2 + \left(y - 2 \operatorname{sin} \left(\frac{4\pi}{5} \right) \right)^2$	
Solving for <i>y</i> gives:	

$$
y = \frac{\sqrt{10}x}{\sqrt{5-\sqrt{5}}-\sqrt{5+\sqrt{5}}}
$$
 (1 mark)

(Note that this is equivalent to the equation in the Method 1 solution)

The algebraic method is made easier by defining $cis(\theta) = cos(\theta) + i sin(\theta)$ on CAS:

TI-nspire:

Define
$$
z=x+y
$$
 i
\nDefine $cis(\theta) = cos(\theta) + i \cdot sin(\theta)$
\n
$$
solve \left(|z-2 \cdot cis \left(\frac{2 \cdot \pi}{5} \right) \right) = |z-2 \cdot cis \left(\frac{4 \cdot \pi}{5} \right) |, y \right)
$$
\n
$$
y = \frac{\sqrt{10 \cdot x}}{\sqrt{5-\sqrt{5}} - \sqrt{\sqrt{5}+5}}
$$

or by using the exponential notation $cis(\theta) = e^{i\theta}$:

Define
$$
z=x+y
$$
 i
\n
$$
\int \int \text{Solve } \int \left| z-2 \cdot e^{-\frac{2 \cdot \pi \cdot i}{5}} \right| = \left| z-2 \cdot e^{-\frac{4 \cdot \pi \cdot i}{5}} \right| y
$$
\n
$$
y = \frac{\sqrt{10 \cdot x}}{\sqrt{5-\sqrt{5}} - \sqrt{\sqrt{5}+5}}
$$

e. There are 5 possible lines (1 mark)

(Notice that each of the required lines is a perpendicular bisector of z_a and z_b , which will also pass through the origin and one of the other 5 roots).

f. The centre of the circle must be equally distant from z_2 and z_5 , so the centre must lie on the x axis.

Now find the point $(w, 0)$ on the x axis that is equally distant from z_2 and the origin:

$$
w = \sqrt{\left(w - \cos\left(\frac{2\pi}{5}\right)\right)^2 + \left(\sin\left(\frac{2\pi}{5}\right)\right)^2}
$$
 (1 mark)

$$
w = \frac{\sqrt{5} + 1}{2}
$$

Now, w is also the radius of the circle, so the equation is:

$$
\left| z - \frac{\sqrt{5} + 1}{2} \right| = \frac{\sqrt{5} + 1}{2}
$$
 (1 mark)

g. The points z_1 , z_2 , z_3 , z_4 and z_5 lie on a circle with radius 2. To transform them to a circle with radius $\frac{\sqrt{5}+1}{2}$, we require $p = \frac{\sqrt{5}}{2}$ 4 $(1$ mark)

The points z_1 , z_2 , z_3 , z_4 and z_5 lie on a circle with centre (0,0). To transform them to a circle with centre $\left(\frac{\sqrt{5}}{2}\right)$ $\frac{1}{2}$, 0), we require $q = \frac{\sqrt{5}}{4}$ $\overline{\mathbf{c}}$ $(1$ mark $)$

h. The factorised form of the polynomial is:

$$
(z-z1)(z-z2)(z-z5)
$$

= $(z-2)\left(z-2\operatorname{cis}\left(\frac{2\pi}{5}\right)\right)\left(z-2\operatorname{cis}\left(\frac{8\pi}{5}\right)\right)$ (1 mark)

Expanding on CAS gives:
\n
$$
z^3 - (\sqrt{5} + 1)z^2 + 2\sqrt{5}z + 2z - 8
$$
\n(1 mark)

i. There is **not** a cubic polynomial with real coefficients whose roots are z_2 , z_3 , and z_4 . For polynomials with real coefficients, roots must occur in conjugate pairs.

(1 mark for answer with justification)

- **a.** Let $X \sim N(3000, 250^2)$ $Pr(X < 2920) = 0.3745$ (1 mark)
- **b.** H_1 : μ < 3000 (1 mark for both)
- **c.** Let $\bar{X} \sim N\left(3000, \left(\frac{250}{\sqrt{50}}\right)^2\right)$ $p = Pr(\bar{X} < 2920)$ $= 0.0118$ (1 mark)
	- $p > 0.01$, so accept advertiser's claim (1 mark)
- **d.** Require $p \geq 0.01$

Using the inverse normal function on CAS: $Pr(Z < a) = 0.01$ $\Rightarrow a = -2.3263$ (1 mark) (where Z is the standard normal variable)

Using the standardisation formula:

$$
Z = \frac{\bar{x} - \mu}{\left(\frac{\sigma}{\sqrt{n}}\right)}
$$

-2.3263 = $\frac{2920 - 3000}{\frac{250}{\sqrt{n}}}$
 $n = 52.85$

n must be a whole number, so $n = 52$ is the largest sample size (1 mark) for which the student would accept the advertised claim.

e. For a Type I error, the null hypothesis must be true, so $\mu = 3000$, and the null hypothesis must be rejected, so $p < 0.01$ (1 mark)

f. If the true population mean is actually $\mu_2 = 2900$, the student will make a Type II error if she does not reject the null hypothesis (ie. if $p \ge 0.01$).

This will happen if \bar{X} is above the "critical value" \bar{X}_k , which can be found by:

$$
Pr(Z < a) = 0.01
$$
\n
$$
\Rightarrow a = -2.3263
$$
\n
$$
-2.3263 = \frac{\bar{X}_k - 3000}{\frac{250}{\sqrt{50}}}
$$
\n
$$
\bar{X}_k = 2917.75
$$
\n(1 mark)

Now we find $Pr(\bar{X} > 2917.75)$, using the true mean $\mu_2 = 2900$:

g. Yes, the student could still perform the statistical test, because even if the original distribution of lightbulb lifetimes is not normal, the distribution of sample means for a sample of 50 will still be normal (using the central limit theorem).

(1 mark)

a.
$$
\frac{dP}{dt} = \frac{100 - P}{10}
$$

\n
$$
\frac{dt}{dP} = \frac{10}{100 - P}
$$

\n
$$
t = -10 \log_e |100 - P| + c
$$

\n
$$
\frac{t - c}{-10} = \log_e |100 - P|
$$

\n
$$
e^{\frac{t - c}{-10}} = |100 - P|
$$

\n
$$
100 - P = \pm e^{\frac{t - c}{10}}
$$

\n
$$
100 - P = \pm e^{\frac{-t}{10}} \times e^{\frac{c}{10}}
$$

\n
$$
100 - P = Ae^{\frac{-t}{10}} \text{, where } A = \pm e^{\frac{c}{10}}
$$

\n
$$
P = Ae^{\frac{-t}{10}} + 100
$$

\n(1 mark)

b.
$$
4 = Ae^{\frac{-0}{10}} + 100
$$

 $A = -96$ (1 mark)

$$
(1 mark)
$$

c.
$$
P = \frac{100}{1 + 24e^{\frac{-t}{10}}}
$$

\n
$$
= 100(1 + 24e^{\frac{-t}{10}})^{-1}
$$
\nUsing differentiation:
\n
$$
\frac{dP}{dt} = -100\left(1 + 24e^{\frac{-t}{10}}\right)^{-2} \times \left(-\frac{24}{10}e^{\frac{-t}{10}}\right)
$$
\n
$$
= 240e^{\frac{-t}{10}}\left(1 + 24e^{\frac{-t}{10}}\right)^{-2}
$$
\n(1 mark)

We need to show this satisfies the differential equation $\frac{d}{dt}$ $\frac{dP}{dt} = \frac{P}{10} \left(\frac{100 - P}{100} \right)$ Substituting P into the right-hand side:

$$
RHS = \frac{P}{10} \left(\frac{100 - P}{100}\right)
$$

=
$$
\frac{10}{1 + 24e^{\frac{-t}{10}}} \times \frac{\frac{1 + 24e^{\frac{-t}{10}}}{100}}{100}
$$

=
$$
\frac{10}{1 + 24e^{\frac{-t}{10}}} \times \frac{100\left(1 + 24e^{\frac{-t}{10}}\right) - 100}{100\left(1 + 24e^{\frac{-t}{10}}\right)}
$$

=
$$
\frac{10}{1 + 24e^{\frac{-t}{10}}} \times \frac{24e^{\frac{-t}{10}}}{\left(1 + 24e^{\frac{-t}{10}}\right)}
$$

=
$$
240e^{\frac{-t}{10}}\left(1 + 24e^{\frac{-t}{10}}\right)^{-2}
$$

=
$$
\frac{dP}{dt}
$$
 as required

(1 mark for adequate proof)

To show the equation satisfies the initial condition:

$$
P(0) = \frac{100}{1 + 24e^{0}}
$$

= 4 as required
d. $P(30) = \frac{100}{1 + 24e^{-\frac{30}{10}}}$
 ≈ 45.56
 $\approx 46\%$ (1 mark)

$$
\begin{aligned}\n\mathbf{e.} \quad & \frac{dP}{dt} = \frac{P}{10} \left(\frac{100 - P}{100} \right) \\
& \frac{dt}{dP} = \frac{10}{P} \left(\frac{100}{100 - P} \right) \\
& t = \int_{4}^{75} \frac{10}{P} \left(\frac{100}{100 - P} \right) dP \\
& = 42.77\n\end{aligned} \tag{1 mark}
$$

It takes 43 days for at least 75% to see the video (1 mark)

f. Method 1 – Using implicit differentiation

Subscribers are increasing at a maximum rate when $\frac{d^2}{dt^2}$ dt^2 Using implicit differentiation: d^2 $\frac{d^2P}{dt^2} = \left(\frac{1}{10}\left(\frac{100-P}{100}\right) + \frac{P}{10}\left(\frac{-1}{100}\right)\right)\frac{d}{dt}$ \boldsymbol{d} $\frac{1}{10} \left(\frac{100-P}{100} \right) + \frac{P}{10} \left(\frac{-1}{100} \right)$ $P = 50$ (1 mark) Then solve $P(t) = 50$ for t

$$
\frac{100}{1+24e^{\frac{-t}{10}}}=50
$$

1+24e^{\frac{-t}{10}}=31.78 (1 mark)

a. $A(0) =$ \sim \sim \sim Starting point is $(25,0)$ (1 mark)

b. Let $\underline{A}(t) = 0\underline{i} + 0\underline{j}$, \sim which gives two equations: $25 \cos \left(\frac{\pi t}{30}\right) =$

$$
\begin{cases}\n10 \sin\left(\frac{\pi t}{15}\right) = 0, & \text{for } t \in [0, 60] \\
10 \sin\left(\frac{\pi t}{15}\right) = 0.\n\end{cases}
$$

Solving on CAS gives

 $t = 15s$ and $t = 45s$ (1 mark for each solution)

c. Speed =
$$
\left| A'(t) \right|
$$

\n= $\left| \left(\frac{-5\pi}{6} \sin \left(\frac{\pi t}{30} \right) \right) \underbrace{i}_{\sim} + \left(\frac{2\pi}{3} \cos \left(\frac{\pi t}{15} \right) \right) \underbrace{j}_{\sim} \right|$ (1 mark)
\n= $\sqrt{\left(\frac{-5\pi}{6} \sin \left(\frac{\pi t}{30} \right) \right)^2 + \left(\frac{2\pi}{3} \cos \left(\frac{\pi t}{15} \right) \right)^2}$

 Sketching this function on the CAS, we find a maximum speed of 3.53m/s, (1 mark) when $t = 15$ s and $t = 45$ s (1 mark)

The "norm" function on CAS can be used to find the length of a vector.

TI-nspire:

d. Distance =
$$
\int_0^{60} \sqrt{\left(\frac{-5\pi}{6}\sin\left(\frac{\pi t}{30}\right)\right)^2 + \left(\frac{2\pi}{3}\cos\left(\frac{\pi t}{15}\right)\right)^2} dt
$$
 (1 mark)
= 137.97 m (1 mark)

e.
$$
M'(t) = -2t + 4j + \frac{-49}{20}(4t - 145)k
$$

\n $M'(35) = -2t + 4j + 12.25k$
\nInitial speed = $|M'(35)|$
\n= 13.04 m/s (1 mark)
\nAngle of elevation = sin⁻¹ $(\frac{12.25}{13.04})$
\n $\approx 70^{\circ}$ (1 mark)

f. Missile hits the ground when
\n
$$
\frac{49}{20}(35 - t)(2t - 75) = 0
$$
 for $t > 35$
\n $t = 37.5$ s
\nSo $a = 37.5$

 \sim

 Landing position is: $M(37.5) = -15i +$

 Position of Tank A is: $A(37.5) = \frac{-25\sqrt{2}}{2}$ $rac{5v^2}{2}$ i + \sim

 So the distance from Tank A is: $25\sqrt{2}$ $\frac{3\sqrt{2}}{2} - 15 = 2.68 \text{ m}$ (1 mark)

 $(1$ mark)

(1 mark)