SPECIALIST MATHEMATICS

Written examination 2

2018 Trial Examination

SOLUTIONS

SECTION A: Multiple-choice questions (1 mark each)

Question 1

Answer: **B**

Explanation:

The range for $y = \tan^{-1} x$ is $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ (which is given on the VCAA formula sheet).

 $y = \tan^{-1}(x+1) - \frac{\pi}{4}$ has been translated $\frac{\pi}{4}$ down, so the range is $\left(\frac{-3\pi}{4}, \frac{3\pi}{4}\right)$

Question 2

Answer: **D**

Explanation:

Options A to D are all ellipses, but the direction of motion for options A to C is anticlockwise. Only option D gives motion in a **clockwise** direction.

This can be verified by substituting some values for t, or (preferably) by sketching the parametric equations using CAS.

Answer: A

Explanation:

$$\frac{w^2}{\overline{w}} = \frac{(1-i)^2}{1+i}$$
$$= \frac{\left(\sqrt{2}\operatorname{cis}\left(\frac{-\pi}{4}\right)\right)^2}{\sqrt{2}\operatorname{cis}\left(\frac{\pi}{4}\right)}$$
$$= \frac{2\operatorname{cis}\left(\frac{-\pi}{2}\right)}{\sqrt{2}\operatorname{cis}\left(\frac{\pi}{4}\right)}$$
$$= \sqrt{2}\operatorname{cis}\left(\frac{-\pi}{2} - \frac{\pi}{4}\right)$$
$$= \sqrt{2}\operatorname{cis}\left(\frac{-3\pi}{4}\right)$$

This can also be evaluated quickly on CAS:

TI-nspire:

Define w=1-i	Done
$\operatorname{angle}\left(\frac{w^2}{\operatorname{conj}(w)}\right)$	$\frac{-3 \cdot \pi}{4}$

Question 4

Answer: E

Explanation:

$$|z - 3i| = 2|z + 3|$$

$$|x + yi - 3i| = 2|x + yi + 3|$$

$$\sqrt{x^{2} + (y - 3)^{2}} = 2\sqrt{(x + 3)^{2} + y^{2}}$$

$$x^{2} + (y - 3)^{2} = 4((x + 3)^{2} + y^{2})$$

$$x^{2} + y^{2} - 6y + 9 = 4x^{2} + 24x + 4y^{2} + 36$$

Rearranging and completing the square gives: $(x + 4)^2 + (y + 1)^2 = 8$

TI-nspire:

Define <i>z=x+y</i> · <i>i</i>	Done
$ z-3 \cdot i = 2 \cdot z+3 $ $\sqrt{x^2 + (y-3)^2} = 2 \cdot \sqrt{x^2}$	+6· <i>x</i> + <i>y</i> ² +9
$(\sqrt{x^2 + (y-3)^2} = 2 \cdot \sqrt{x^2 + 6 \cdot x + y^2} + 9$	$(-)^{2}$
$x^{2}+(y-3)^{2}=4(x^{2})$	$+6 \cdot x + y^2 + 9$
complete Square $(x^2 + (y-3)^2 = 4 \cdot (x-3)^2)$	$2^{+6 \cdot x+y^2}$
$-3 \cdot (x+4)^2 - 3$	$(y+1)^2 = -24$

Question 5

Answer: **D**

Explanation:

$$f(z) = z^{5} - az^{3} - 2z^{2} + 2a$$

= $z^{3}(z^{2} - a) - 2(z^{2} - a)$
= $(z^{3} - 2)(z^{2} - a)$

Now $(z^3 - 2)$ has two non-real roots (and one real root), and $(z^2 - a)$ will have a maximum of two non-real roots (if a < 0).

So the maximum number of non-real roots is four.

Question 6

Answer: C

Explanation:

 $g'(x) = \sin^{-1} x$ $g''(x) = \frac{1}{\sqrt{1 - x^2}}$ $g''(x) > 0 \text{ for all } x \in (-1, 1)$

So the function g is never concave down.

Answer: D.

Explanation:

In option D, f'(1) < 0 and f''(1) < 0. Therefore, using the tangent to the original function at f(1) would be overestimate f(1.1). See graphs of y = f'(x) and y = f(x) for option D below:

Question 8

Answer: A

Explanation:

.

Let $u = e^x$ Then $\frac{du}{dx} = e^x$ and $e^x = u$

So
$$\int_0^1 e^{2x} \sqrt{e^x + 1} dx$$

= $\int_{e^0}^{e^1} u \times \frac{du}{dx} \times \sqrt{u + 1} dx$
= $\int_1^e u\sqrt{u + 1} du$

Answer: D

Explanation:

Let the area of the equilateral triangle with height *h* be *A*. Using trigonometry, the "base" of the equilateral triangle must be $2 \times \frac{h}{\tan(60^\circ)} = \frac{2h}{\sqrt{3}}$

So
$$A = \frac{1}{2} \times \frac{2h}{\sqrt{3}} \times h$$
$$= \frac{h^2}{\sqrt{3}}$$

And the volume of the prism is: $V = A \times 2$ $= \frac{2h^2}{\sqrt{3}}$ So $\frac{dV}{dh} = \frac{4h}{\sqrt{3}}$

Now,
$$\frac{dV}{dt} = \frac{1}{2}$$
 and
 $\frac{dh}{dt} = \frac{dh}{dV} \times \frac{dV}{dt}$
 $= \frac{\sqrt{3}}{4h} \times \frac{1}{2}$
 $= \frac{\sqrt{3}}{4}$ when $h = \frac{1}{2}$

Answer: E

Explanation:

Graph each pair of functions on CAS, trying a few different values for k (or using a slider).

Option A is incorrect, because $y = \sec(x)$ does not intersect with $y = \csc(x - \frac{\pi}{2})$ Option B is incorrect, because $y = \sec(x)$ does not intersect with $y = \cot(x - \frac{\pi}{2})$ Option C is incorrect, because $y = \sec(x)$ does not intersect with $y = \cos(x - \frac{\pi}{2})$ Option D is incorrect, because $y = \sec(x)$ does not intersect with $y = \cos^{-1}(x + \frac{\pi}{2})$ Option E is correct, because $y = \sec(x)$ does intersect with $y = \tan^{-1}(x + k)$ for all $k \in R$

Question 11

Answer: E

Explanation:

When = 0, $\frac{dy}{dx}$ is undefined (this is satisfied by all options) When = 0, $\frac{dy}{dx} = 0$ (this is satisfied by all options) When x > 0 and > 0, $\frac{dy}{dx} < 0$ (this is only satisfied by options B and E) When x > 0 and < 0, $\frac{dy}{dx} < 0$ (this is only satisfied by option E)

To check, we can sketch option E using the CAS:

TI-nspire:

Answer: C

Explanation:

Let $\underbrace{u}_{\sim} = 3\underbrace{i}_{\sim} - 2\underbrace{j}_{\sim}$ and $\underbrace{v}_{\sim} = \underbrace{i}_{\sim} + \underbrace{k}_{\sim}$, then the resolute of \underline{u} parallel to \underbrace{v}_{\sim} is $\left(\underbrace{u}_{\sim} \cdot \widehat{v}\right) \underbrace{v}_{\sim}$ Now, $\underbrace{v}_{\sim} = \frac{1}{\sqrt{2}} (\underbrace{i}_{\sim} + \underbrace{k}_{\sim})$ and $\underbrace{u}_{\sim} \cdot \underbrace{v}_{\sim} = \frac{3}{\sqrt{2}}$ so $\left(\underbrace{u}_{\sim} \cdot \underbrace{v}_{\sim}\right) \underbrace{v}_{\sim} = \frac{3}{\sqrt{2}} \times \frac{1}{\sqrt{2}} (\underbrace{i}_{\sim} + \underbrace{k}_{\sim})$ $= \frac{3}{2}\underbrace{i}_{\sim} + \frac{3}{2}\underbrace{k}_{\sim}$

Question 13

Answer: A

Explanation:

The condition $\overrightarrow{AB} \cdot \overrightarrow{AD} \neq 0$ means that vertex *A* is not a right angle. $\overrightarrow{AB} + \overrightarrow{BC}$ and $\overrightarrow{BC} + \overrightarrow{CD}$ are the diagonals of the quadrilateral. The condition $(\overrightarrow{AB} + \overrightarrow{BC}) \cdot (\overrightarrow{BC} + \overrightarrow{CD}) = 0$ means that the diagonals are perpendicular.

Drawing a diagram, we can see that the quadrilateral could be a rhombus, but not a square.

Answer: D

Explanation:

The vectors a, b and c must be linearly independent.

This means that there must **not** be constants *p* and *q* such that pa + qb = c. We could test each option, but if we notice that option A is a + b and option B is a - b, we can rule these out and start testing from option C:

Solving p(i-2j+k) + q(3i+2j+k) = i+6j-kgives p = -2 and q = 1 (vectors are linearly dependent).

Try option D: Solving $p\left(\underbrace{i-2j+k}_{\sim}\right) + q\left(3\underbrace{i+2j+k}_{\sim}\right) = -2\underbrace{i+j+k}_{\sim}$ gives no solutions (vectors are linearly independent).

TI-nspire:

solve
$$(p \cdot [1 \ -2 \ 1] + q \cdot [3 \ 2 \ 1] = [1 \ 6 \ -1]_{,j}$$

 $p = -2 \text{ and } q = 1$
solve $(p \cdot [1 \ -2 \ 1] + q \cdot [3 \ 2 \ 1] = [-2 \ 1 \ 1]_{,j}$
false

Question 15

Answer: B

Explanation:

$$a = \sqrt{x-3}$$

$$\frac{d}{dx} \left(\frac{1}{2}v^2\right) = \sqrt{x-3}$$

$$\frac{1}{2}v^2 = \frac{2}{3}(x-3)^{\frac{3}{2}} + c$$
Substituting $x = 7$, $v = 1$ and solving gives $c = -\frac{29}{6}$

$$\frac{1}{2}v^2 = \frac{2}{3}(x-3)^{\frac{3}{2}} - \frac{29}{6}$$

Substituting x = 12 and solving gives $v = \frac{\sqrt{237}}{3}$ (note that v > 0 because of the initial condition)

Answer: **B**

Explanation:

Resolving forces parallel to the plane, given that the objects are in equilibrium, we have: $M_1 \sin(45^\circ) = M_2 \sin(30^\circ)$

$$\frac{\frac{\sqrt{2}}{2}}{M_1} = \frac{1}{2}M_2$$
$$\frac{M_1}{M_2} = \frac{1}{\sqrt{2}}$$
$$\frac{M_1}{M_2} = \frac{\sqrt{2}}{2}$$
So $M_1: M_2 = \sqrt{2}: 2$

As a logical check, we can notice that as M_1 is on a steeper slope, M_2 must be the heavier object to keep the system in equilibrium.

Question 17

Answer: **D**

Explanation:

Let *i* be a unit vector in the direction of the 5N force, and *j* be a unit vector perpendicular to

the 5*N* force (90° anti-clockwise). We can then represent the net force as:

$$(5 + 3\cos(130^\circ) + 4\cos(-140^\circ))i + (3\sin(130^\circ) + 4\sin(-140^\circ))j$$

 $\approx 0.008i - 0.273j$

which gives a direction between the 4N and 5N force

Question 18

Answer: A

Explanation:

The sample mean must be in the centre of the confidence interval, so $\bar{x} = \frac{35.32 + 41.58}{2} = 38.45$ For a 99% confidence interval, z = 2.5758(using the standard normal $Z \sim N(0,1)$ to solve $\Pr(Z < z) = 0.995$ for z)

Now,
$$38.45 + 2.5758 \times \frac{s}{\sqrt{50}} = 41.58$$

 $s = 8.59$

Answer: **D**

Explanation:

$$SD(\bar{X}) = \frac{\sigma}{\sqrt{n}} \\ = \frac{15}{\sqrt{25}} \\ = 3$$

Calculating the (two-tailed) p values for each option:

A.
$$\bar{x} = 107$$
, $p = 2 \times \Pr\left(Z < \frac{107 - 120}{3}\right) \approx 0.00001$
B. $\bar{x} = 109$, $p = 2 \times \Pr\left(Z < \frac{109 - 120}{3}\right) \approx 0.0002$
C. $\bar{x} = 111$, $p = 2 \times \Pr\left(Z < \frac{111 - 120}{3}\right) \approx 0.003$
D. $\bar{x} = 113$, $p = 2 \times \Pr\left(Z < \frac{113 - 120}{3}\right) \approx 0.020$
E. $\bar{x} = 115$, $p = 2 \times \Pr\left(Z < \frac{115 - 120}{3}\right) \approx 0.096$

Option D is the only option with a p value between 0.01 and 0.05

Question 20

Answer: **D**

Explanation:

The distance the ball has travelled is given by: $X = Ut + \frac{1}{2}at^{2},$ where $U \sim N(5, 0.5^{2})$ and -0.1 = 0.1a a = -1So $X = Ut - \frac{1}{2}t^{2},$ and after 2 seconds: X = 2U - 2For the ball to travel at least 10m,

2U - 2 > 10

U > 6

Using the normal random variable $U \sim N(5, 0.5^2)$:

Pr(U > 6) = 0.023

SECTION B: Extended response questions

Question 1

c.

a. Using CAS:
$$f'(x) = \frac{-2x}{(x-1)^3}$$
 (1 mark)

For stationary points: f'(x) = 0 x = 0Coordinates are (0, -1)

b.
$$f''(x) = \frac{2(2x+1)}{(x-1)^4}$$
 (1 mark)

For points of inflection:

$$f''(x) = 0$$

 $x = -\frac{1}{2}$
Coordinates are $(-\frac{1}{2}, -\frac{8}{9})$

(1 mark)

(1 mark)

Graph shape	(1 mark)
Intercept and asymptote	(1 mark)
Stationary point and inflection point	(1 mark)

d.
$$f(x) = \frac{2}{(x-1)} + \frac{1}{(x-1)^2}$$
 (1 mark)
(Using the 'expand' function on CAS)

e. f is below the y axis in the required interval.
Area =
$$\int_{\frac{1}{2}}^{-2} \frac{2}{(x-1)} + \frac{1}{(x-1)^2} dx$$
 (1 mark)
= $2 \log_e 6 - \frac{5}{3}$ square units (1 mark)

a.
$$z^5 = 32$$

= $2^5 \operatorname{cis}(0 + 2k\pi)$, $k \in \mathbb{Z}$
 $z = 2\operatorname{cis}(\frac{2k\pi}{5})$, $k \in \mathbb{Z}$
= $2\operatorname{cis}(0)$, $2\operatorname{cis}(\frac{2\pi}{5})$, $2\operatorname{cis}(\frac{4\pi}{5})$, $2\operatorname{cis}(\frac{6\pi}{5})$, $2\operatorname{cis}(\frac{8\pi}{5})$

d. <u>Method 1 – Geometrically</u>

Notice that the required line is the perpendicular bisector of z_2 and z_3 , Which will also pass through the origin and z_5 . (1 mark)

This line has equation
$$y = mx$$
, where the gradient $m = \frac{\sin(\frac{8\pi}{5})}{\cos(\frac{8\pi}{5})}$
 $y = \frac{-1}{4}x(\sqrt{5}+1)\sqrt{2(\sqrt{5}+5)}$ (1 mark)

$$\frac{\text{Method } 2 - \text{Algebraically}}{\left|z - 2\text{cis}\left(\frac{2\pi}{5}\right)\right| = \left|z - 2\text{cis}\left(\frac{4\pi}{5}\right)\right| \qquad (1 \text{ mark})$$

$$\left|x + yi - 2\cos\left(\frac{2\pi}{5}\right) - 2i\sin\left(\frac{2\pi}{5}\right)\right| = \left|x + yi - 2\cos\left(\frac{4\pi}{5}\right) - 2i\sin\left(\frac{4\pi}{5}\right)\right| \\ \left(x - 2\cos\left(\frac{2\pi}{5}\right)\right)^2 + \left(y - 2\sin\left(\frac{2\pi}{5}\right)\right)^2 = \left(x - 2\cos\left(\frac{4\pi}{5}\right)\right)^2 + \left(y - 2\sin\left(\frac{4\pi}{5}\right)\right)^2$$
Solving for y gives:
$$y = \frac{\sqrt{10x}}{\sqrt{10x}} \qquad (1 \text{ mark})$$

$$y = \frac{\sqrt{10}x}{\sqrt{5 - \sqrt{5}} - \sqrt{5 + \sqrt{5}}}$$
 (1 mark

(Note that this is equivalent to the equation in the Method 1 solution)

The algebraic method is made easier by defining $cis(\theta) = cos(\theta) + i sin(\theta)$ on CAS:

TI-nspire:

Define
$$z=x+y$$
 i Done
Define $cis(\theta)=cos(\theta)+i \cdot sin(\theta)$ Done
 $solve\left(\left|z-2 \cdot cis\left(\frac{2 \cdot \pi}{5}\right)\right|=\left|z-2 \cdot cis\left(\frac{4 \cdot \pi}{5}\right)\right|,y\right)$
 \swarrow
 $\gamma = \frac{\sqrt{10} \cdot x}{\sqrt{5-\sqrt{5}} - \sqrt{\sqrt{5}+5}}$

or by using the exponential notation $cis(\theta) = e^{i\theta}$:

Define
$$z=x+y$$
 i Done
solve $\left| z-2 \cdot e^{\frac{2 \cdot \pi \cdot i}{5}} \right| = \left| z-2 \cdot e^{\frac{4 \cdot \pi \cdot i}{5}} \right|_{y}$
 $y=\frac{\sqrt{10} \cdot x}{\sqrt{5-\sqrt{5}} - \sqrt{\sqrt{5}+5}}$

e. There are 5 possible lines (1 mark)

(Notice that each of the required lines is a perpendicular bisector of z_a and z_b , which will also pass through the origin and one of the other 5 roots).

f. The centre of the circle must be equally distant from z_2 and z_5 , so the centre must lie on the *x* axis.

Now find the point (w, 0) on the x axis that is equally distant from z_2 and the origin:

$$w = \sqrt{\left(w - \cos\left(\frac{2\pi}{5}\right)\right)^2 + \left(\sin\left(\frac{2\pi}{5}\right)\right)^2}$$
(1 mark)
$$w = \frac{\sqrt{5}+1}{2}$$

Now, *w* is also the radius of the circle, so the equation is:

$$\left|z - \frac{\sqrt{5}+1}{2}\right| = \frac{\sqrt{5}+1}{2}$$
 (1 mark)

g. The points z_1 , z_2 , z_3 , z_4 and z_5 lie on a circle with radius 2. To transform them to a circle with radius $\frac{\sqrt{5}+1}{2}$, we require $p = \frac{\sqrt{5}+1}{4}$. (1 mark)

The points z_1 , z_2 , z_3 , z_4 and z_5 lie on a circle with centre (0,0). To transform them to a circle with centre $(\frac{\sqrt{5}+1}{2}, 0)$, we require $q = \frac{\sqrt{5}+1}{2}$. (1 mark)

h. The factorised form of the polynomial is:

$$(z - z_1)(z - z_2)(z - z_5)$$

= $(z - 2)\left(z - 2\operatorname{cis}\left(\frac{2\pi}{5}\right)\right)\left(z - 2\operatorname{cis}\left(\frac{8\pi}{5}\right)\right)$ (1 mark)

Expanding on CAS gives:

$$z^{3} - (\sqrt{5} + 1)z^{2} + 2\sqrt{5}z + 2z - 8$$
 (1 mark)

i. There is **not** a cubic polynomial with real coefficients whose roots are z_2 , z_3 , and z_4 . For polynomials with real coefficients, roots must occur in conjugate pairs.

(1 mark for answer with justification)

- **a.** Let $X \sim N(3000, 250^2)$ Pr(X < 2920) = 0.3745 (1 mark)
- **b.** $H_0: \quad \mu = 3000$ $H_1: \quad \mu < 3000$ (1 mark for both)
- c. Let $\bar{X} \sim N\left(3000, \left(\frac{250}{\sqrt{50}}\right)^2\right)$ $p = \Pr(\bar{X} < 2920)$ = 0.0118 (1 mark)
 - p > 0.01, so accept advertiser's claim (1 mark)
- **d.** Require $p \ge 0.01$

Using the inverse normal function on CAS: Pr(Z < a) = 0.01 $\Rightarrow a = -2.3263$ (1 mark) (where Z is the standard normal variable)

Using the standardisation formula:

$$Z = \frac{\bar{X} - \mu}{\left(\frac{\sigma}{\sqrt{n}}\right)}$$
$$-2.3263 = \frac{2920 - 3000}{\frac{250}{\sqrt{n}}}$$
$$n = 52.85$$

n must be a whole number, so n = 52 is the largest sample size (1 mark) for which the student would accept the advertised claim.

e. For a Type I error, the null hypothesis must be true, so $\mu = 3000$, and the null hypothesis must be rejected, so p < 0.01 (1 mark)

$Pr(type \ I \ error) = 0.01$	(1 mark)
(because she is testing at the 1% significance level)	

f. If the true population mean is actually $\mu_2 = 2900$, the student will make a Type II error if she does not reject the null hypothesis (ie. if $p \ge 0.01$).

This will happen if \overline{X} is above the "critical value" \overline{X}_k , which can be found by:

$$Pr(Z < a) = 0.01$$

$$\Rightarrow a = -2.3263$$

$$-2.3263 = \frac{\bar{x}_k - 3000}{\frac{250}{\sqrt{50}}}$$

 $\bar{X}_k = 2917.75$ (1 mark)

Now we find $Pr(\overline{X} > 2917.75)$, using the true mean $\mu_2 = 2900$:

$$Pr(\bar{X} > 2917.75) = Pr(Z > \frac{2917.75 - 2900}{\frac{250}{\sqrt{50}}})$$

= 0.3078 (1 mark)

g. Yes, the student could still perform the statistical test, because even if the original distribution of lightbulb lifetimes is not normal, the distribution of sample means for a sample of 50 will still be normal (using the central limit theorem).

(1 mark)

a.
$$\frac{dP}{dt} = \frac{100 - P}{10}$$
$$\frac{dt}{dP} = \frac{10}{100 - P}$$
$$t = -10 \log_{e} |100 - P| + c \qquad (1 \text{ mark})$$
$$\frac{t - c}{-10} = \log_{e} |100 - P|$$
$$e^{\frac{t - c}{-10}} = |100 - P|$$
$$100 - P = \pm e^{\frac{t - c}{-10}} \qquad (1 \text{ mark})$$
$$100 - P = \pm e^{\frac{t - c}{-10}} \qquad (1 \text{ mark})$$
$$100 - P = \pm e^{\frac{-t}{10}} \times e^{\frac{c}{10}}$$
$$100 - P = Ae^{\frac{-t}{10}}, \quad \text{where } A = \pm e^{\frac{c}{10}} \qquad (1 \text{ mark})$$
$$P = Ae^{\frac{-t}{10}} + 100$$

b.
$$4 = Ae^{\frac{-0}{10}} + 100$$

 $A = -96$

c.
$$P = \frac{100}{1+24e^{\frac{-t}{10}}}$$

= 100(1 + 24e^{\frac{-t}{10}})^{-1}
Using differentiation:
$$\frac{dP}{dt} = -100 \left(1 + 24e^{\frac{-t}{10}}\right)^{-2} \times \left(-\frac{24}{10}e^{\frac{-t}{10}}\right)$$

= 240e^{\frac{-t}{10}} \left(1 + 24e^{\frac{-t}{10}}\right)^{-2} (1 mark)

We need to show this satisfies the differential equation $\frac{dP}{dt} = \frac{P}{10} \left(\frac{100 - P}{100} \right)$ Substituting *P* into the right-hand side:

$$RHS = \frac{P}{10} \left(\frac{100-P}{100}\right)$$

$$= \frac{10}{1+24e^{\frac{-t}{10}}} \times \frac{100-\frac{100}{1+24e^{\frac{-t}{10}}}}{100}$$

$$= \frac{10}{1+24e^{\frac{-t}{10}}} \times \frac{100\left(1+24e^{\frac{-t}{10}}\right)-100}{100\left(1+24e^{\frac{-t}{10}}\right)}$$

$$= \frac{10}{1+24e^{\frac{-t}{10}}} \times \frac{24e^{\frac{-t}{10}}}{\left(1+24e^{\frac{-t}{10}}\right)}$$

$$= 240e^{\frac{-t}{10}} \left(1+24e^{\frac{-t}{10}}\right)^{-2}$$

$$= \frac{dP}{dt} \qquad \text{as required}$$

(1 mark for adequate proof)

(1 mark)

© TSSM 2018

To show the equation satisfies the initial condition:

$$P(0) = \frac{100}{1+24e^{0}}$$
 (1 mark)
= 4 as required
d. $P(30) = \frac{100}{1+24e^{-\frac{30}{10}}}$
 ≈ 45.56
 $\approx 46\%$ (1 mark)

e.
$$\frac{dP}{dt} = \frac{P}{10} \left(\frac{100 - P}{100} \right)$$
$$\frac{dt}{dP} = \frac{10}{P} \left(\frac{100}{100 - P} \right)$$
$$t = \int_{4}^{75} \frac{10}{P} \left(\frac{100}{100 - P} \right) dP$$
(1 mark)
$$= 42.77$$

It takes 43 days for at least 75% to see the video (1 mark)

f. <u>Method 1 – Using implicit differentiation</u>

Subscribers are increasing at a maximum rate when $\frac{d^2 P}{dt^2} = 0$ Using implicit differentiation: $\frac{d^2 P}{dt^2} = \left(\frac{1}{10}\left(\frac{100-P}{100}\right) + \frac{P}{10}\left(\frac{-1}{100}\right)\right)\frac{dP}{dt}$ $0 = \frac{1}{10}\left(\frac{100-P}{100}\right) + \frac{P}{10}\left(\frac{-1}{100}\right)$ P = 50(1 mark) Then solve P(t) = 50 for t:

Then solve
$$P(t) = 50$$
 for t:

$$\frac{100}{1+24e^{\frac{-t}{10}}} = 50$$
 $t = 31.78$
(1 mark)

(1 mark) (1 mark)

a. A(0) = 25 iStarting point is (25,0)

(1 mark)

b. Let A(t) = 0 $\stackrel{i}{\leftarrow} + 0$ $\stackrel{j}{\leftarrow}$, which gives two equations: $\begin{cases} 25 \cos\left(\frac{\pi t}{30}\right) = 0\\ 10 \sin\left(\frac{\pi t}{15}\right) = 0 \end{cases}$, for $t \in [0,60]$

Solving on CAS gives t = 15s and t = 45s

(1 mark for each solution)

c. Speed =
$$\left| \frac{A'(t)}{4} \right|$$

= $\left| \left(\frac{-5\pi}{6} \sin\left(\frac{\pi t}{30}\right) \right) \frac{i}{2} + \left(\frac{2\pi}{3} \cos\left(\frac{\pi t}{15}\right) \right) \frac{j}{2} \right|$ (1 mark)
= $\sqrt{\left(\frac{-5\pi}{6} \sin\left(\frac{\pi t}{30}\right) \right)^2 + \left(\frac{2\pi}{3} \cos\left(\frac{\pi t}{15}\right) \right)^2}$

Sketching this function on the CAS,
we find a maximum speed of 3.53 m/s,(1 mark)when t = 15 s and t = 45 s(1 mark)

The "norm" function on CAS can be used to find the length of a vector.

TI-nspire:

d. Distance
$$= \int_{0}^{60} \sqrt{\left(\frac{-5\pi}{6}\sin\left(\frac{\pi t}{30}\right)\right)^{2} + \left(\frac{2\pi}{3}\cos\left(\frac{\pi t}{15}\right)\right)^{2}} dt$$
 (1 mark)
= 137.97 m (1 mark)

e.
$$M'(t) = -2i + 4j + \frac{-49}{20}(4t - 145)k$$

 $M'(35) = -2i + 4j + 12.25k$
Initial speed = $|M'(35)|$
 $= 13.04 \text{ m/s}$ (1 mark)
Angle of elevation = $\sin^{-1}\left(\frac{12.25}{13.04}\right)$
 $\approx 70^{\circ}$ (1 mark)

f. Missile hits the ground when $\frac{49}{20}(35-t)(2t-75) = 0 \text{ for } t > 35$ t = 37.5 sSo a = 37.5

Landing position is: M(37.5) = -15i + 10j

Position of Tank A is: $A(37.5) = \frac{-25\sqrt{2}}{2}i + 10j$

So the distance from Tank A is: $\frac{25\sqrt{2}}{2} - 15 = 2.68 \text{ m}$

(1 mark)

(1 mark)

(1 mark)