

Victorian Certificate of Education – 2018 VCAA Examinations

SPECIALIST MATHEMATICS

Written Examination 2

PROVISIONAL SOLUTIONS

SECTION A

Question 1 (1 mark) The range of $y = \frac{1}{2}\arctan(x)$ is $\left(\frac{-\pi}{4}, \frac{\pi}{4}\right)$. Hence, the graph has asymptotes at $y = \frac{\pm \pi}{4}$. The answer is **E**.

Question 2 (1 mark) The domain of f, where c > 0, is $\{x \mid -1 \le cx + d \le 1\} \cap \{x \mid \arcsin(cx + d) > 0\}$ $= \left\{ x \mid \frac{-1-d}{c} \le x \le \frac{1-d}{c} \right\} \cap \left\{ x \mid x > \frac{-d}{c} \right\}$

Since $\frac{-1-d}{c} < \frac{-d}{c} < \frac{1-d}{c}$ for all c > 0 and $d \in \mathbb{R}$, the domain of f is $x \in \left(\frac{-d}{c}, \frac{1-d}{c}\right]$.

The answer is **B**.

Question 3 (1 mark)

$$\frac{2x^2 + 3x + 1}{(2x+1)^3 (x^2 - 1)} = \frac{(x+1)(2x+1)}{(2x+1)^3 (x+1)(x-1)}$$
$$= \frac{1}{(2x+1)^2 (x-1)}$$

The factor (2x+1) is repeated twice. The answer is **D**.

Question 4 (1 mark)

$$\csc(-x) = -\csc(x)$$
 (csc(.) is odd)
 $= -\frac{\cot(x)}{\cos(x)}$
 $= -\frac{b}{-a}$
 $= \frac{b}{a}$
The answer is A.

Question 5 (1 mark)

$$z = a + bi$$
, where $a \neq 0$ and $b \neq 0$.
 $z + \frac{1}{z} = \frac{a}{a^2 + b^2} + a + \left(b - \frac{b}{a^2 + b^2}\right)i$
If $z + \frac{1}{z} \in \mathbb{R}$, then $b - \frac{b}{a^2 + b^2} = 0$
 $a^2 + b^2 = |z| = 1$.
The answer is **D**.

Question 6 (1 mark)

In the complex plane, the points 0, z, iz, z + izrepresent a square since |z| = |iz| and

$$\operatorname{Arg}(iz) - \operatorname{Arg}(z) \equiv \frac{\pi}{2}$$

Let A =area of triangle.

$$A = \frac{1}{2}|z||iz|$$
$$= \frac{|z|^2}{2}$$

The answer is **C**.

Question 7 (1 mark) Let L = length. $L = \int_{0}^{2\pi} \sqrt{\left(\frac{d}{dt}[\sin(2t)]\right)^{2} + \left(\frac{d}{dt}[2\cos(t)]\right)^{2}} dt$ = 12.1944... units. The answer is **C**.

Question 8 (1 mark)

Let $I = \int_0^{\frac{\pi}{6}} \tan^2(x) \sec^2(x) dx$. Let $u = \tan(x)$. $\frac{du}{dx} = \sec^2(x), \ u(0) = 0 \text{ and } u\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}$. Hence, $I = \int_0^{\frac{1}{\sqrt{3}}} u^2 du$. The answer is **E**.

$$\frac{dy}{dx} = \frac{2}{\sin(x+y) - \sin(x-y)}$$
$$= \frac{1}{\cos(x)\sin(y)}$$
$$\int \sin(y) dy = \int \frac{1}{\cos(x)} dx$$
$$\int \sec(x) dx = \int \sin(y) dy$$
The answer is **D**.

Question 10 (1 mark)

 $\frac{dy}{dx}\Big|_{(x,0)} < 0 \text{ and } \frac{dy}{dx}\Big|_{(0,y)} > 0.$ By elimination, $\frac{dy}{dx} = \frac{2x+y}{y-2x}.$ The answer is **A**.

Question 11 (1 mark)

 $\underline{a} = m\underline{i} + \underline{j}$ and $\underline{b} = \underline{i} + m\underline{j}$. $\underline{a} \cdot \underline{b} = |\underline{a}| |\underline{b}| \cos(30^{\circ})$ $m = \sqrt{3}, \frac{1}{\sqrt{3}}$. The answer is **C**. $\begin{aligned} |\underline{a} + \underline{b}| &= |\underline{a}| + |\underline{b}| \implies |\underline{a} + \underline{b}|^2 = |\underline{a}|^2 + |\underline{b}|^2 + 2|\underline{a}||\underline{b}| \\ \text{But, from the cosine rule,} \\ &|\underline{a} + \underline{b}|^2 = |\underline{a}|^2 + |\underline{b}|^2 + 2|\underline{a}||\underline{b}|\cos(\theta) \ (0 \le \theta \le \pi) \\ \text{Hence, we require } \cos(\theta) = 1. \\ \text{Therefore, } \theta = 0, \text{ and so } \underline{a} ||\underline{b}. \\ \text{The answer is } \mathbf{A}. \end{aligned}$

Question 13 (1 mark) $\underline{r}(t) = 3\cos(t)\underline{i} + 4\sin(t)\underline{j}.$ $|\underline{\dot{r}}(t)| = \sqrt{7\cos^2(t) + 9}.$ Let $\frac{d|\underline{\dot{r}}(t)|}{dt} = 0.$ Minimum occurs when $\cos(t) = 0.$ Hence, the first time when minimum speed is

$$t = \frac{\pi}{2}$$

Question 12 (1 mark)

The answer is **B**.

Question 14 (1 mark) $\underline{a} = 3\underline{i} - 2\underline{k}$ and $\underline{b} = -\underline{i} + 2\underline{j} + 3\underline{k}$. $\underline{a} \cdot \underline{b} = -\frac{9\sqrt{14}}{14}$ The answer is **C**.

Question 15 (1 mark) $a = \frac{P}{8}$ $v \frac{dv}{dx} = \frac{P}{8}$ $\int_{4}^{20} v \, dv = \int_{0}^{15} \frac{P}{8} \, dx$ P = 102.4 NThe answer is **E**.

Question 16 (1 mark) Vertically, $F_2 \sin(45^\circ) = 4 + 3\sin(30^\circ)$. $F_2 = \frac{11\sqrt{2}}{2}$ The answer is **B**. **Question 17** (1 mark) a = -g $0 = \int_0^t \left[\int_0^z -g \, dw + 2 \right] dz + 50$ t = 3.40498... s.The answer is **E**.

Question 18 (1 mark)

2.1.95996... $\frac{\sigma}{\sqrt{36}}$ = 67.31 - 58.42 σ = 13.6074... days The answer is **D**.

Question 19 (1 mark)

Let X = gestation period of cats. $X \sim N\left(66, \left(\frac{4}{3}\right)^2\right)$

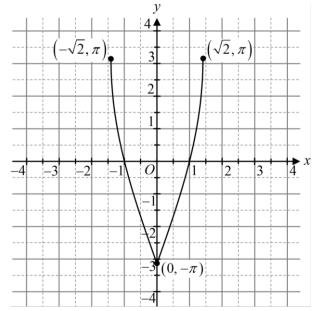
 $\overline{X} \sim N\left(66, \frac{16}{45}\right)$ $Pr(\overline{X} > 65) = 0.953234...$ The answer is **E**.

Question 20 (1 mark) Let M = scores on maths test. Let S = scores on statistics test. $M \sim N(71, 10^2)$ $S \sim N(75, 7^2)$ E(M - S) = 71 - 75 = -4 $sd(M - S) = \sqrt{10^2 + 7^2}$ $= \sqrt{149}$ Pr(M > S) = Pr(M - S > 0) = 0.371572...The answer is **B**.

SECTION B

Question 1a (2 marks) $f: D \to \mathbb{R}, f(x) = 2 \arcsin(x^2 - 1)$ $\operatorname{Dom}(f) = \{x \mid -1 \le x^2 - 1 \le 1\}$ $= \left[-\sqrt{2}, \sqrt{2}\right]$ $\operatorname{Ran}(f) = \left[f(0), f(\sqrt{2})\right]$ $= \left[-\pi, \pi\right]$

Question 1b (3 marks)



Question 1c (1 mark) $f'(x) = \frac{4 \operatorname{sgn}(x)}{\sqrt{2 - x^2}}$

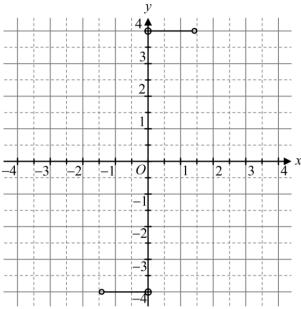
Therefore, for x > 0, $f'(x) = \frac{4}{\sqrt{2-x^2}}$.

Question 1d (1 mark) For x < 0, $f'(x) = \frac{-4}{\sqrt{2-x^2}}$.

Question 1e.i (1 mark) $Dom(f') = \left(-\sqrt{2}, 0\right) \cup \left(0, \sqrt{2}\right)$

Question 1e.ii (1 mark) $g(x) = \begin{cases} -4 & -\sqrt{2} < x < 0 \\ 4 & 0 < x < \sqrt{2} \end{cases}$

Question 1.e.iii (2 marks)



Question 2a (1 mark) |z - (1 + 2i)| = 2Centre: (1, 2) Radius: 2

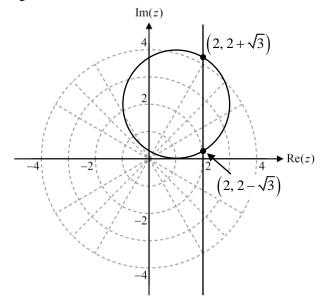
Question 2b (2 marks)

$$|z+1| = \sqrt{2} |z-i|$$

Let $z = x + yi$.
 $\sqrt{(x+1)^2 + y^2} = \sqrt{2} \sqrt{x^2 + (y-1)^2}$
 $x^2 + 2x + 1 + y^2 = 2x^2 + 2y^2 - 4y + 2$
 $x^2 - 2x + y^2 - 4y = -1$
 $(x-1)^2 - 1 + (y-2)^2 - 4 = -1$
 $(x-1)^2 + (y-2)^2 = 2^2$

Hence, the circle given by $|z+1| = \sqrt{2} |z-i|$ has a centre at (1, 2) and a radius of 2, the same as in part **a**, as required.

Question 2c



Question 2d (2 marks) The perpendicular bisector of |z-1| = |z-3| is the line x = 2.

Let x = 2. $y = 2 \pm \sqrt{3}$ (see graph above in **Q2c**)

Question 2e (3 marks)

Let θ = angle formed by line segments joining centre and intersections.

$$\theta = \arctan\left(\frac{2+\sqrt{3}-2}{2-1}\right) - \arctan\left(\frac{2-\sqrt{3}-2}{2-1}\right)$$
$$= \frac{2\pi}{3}$$

Let A = area of minor segment.

$$A = \frac{2^2}{2} \left(\frac{2\pi}{3} - \sin\left(\frac{2\pi}{3}\right) \right)$$
$$= \frac{4\pi}{3} - \sqrt{3} \text{ units}^2$$

5

VCAA 2018 Specialist Mathematics Exam 2 Solutions

Question 3a (2 marks)

$$y = \frac{1}{2}\sqrt{4x^{2} - 1}$$

$$x^{2} = y^{2} + \frac{1}{4}$$

$$V = \pi \int_{0}^{h} \left(y^{2} + \frac{1}{4}\right) dy$$

$$= \pi \left[\frac{y^{3}}{3} + \frac{y}{4}\right]_{0}^{h}$$

$$= \pi \left(\frac{h^{3}}{3} + \frac{h}{4}\right)$$

$$= \frac{\pi}{4} \left(\frac{4}{3}h^{3} + h\right), \text{ as required.}$$

Question 3b (2 marks) Let $V(h) = \frac{1}{2}V\left(\frac{\sqrt{3}}{2}\right)$. h = 0.59 m (2 dp)

Question 3c.i (2 marks)

$$\frac{dV}{dt} = 0.04 - 0.05\sqrt{h}$$

$$= \frac{4 - 5\sqrt{h}}{100}$$

$$\frac{dV}{dh} = \frac{\pi}{4} (4h^2 + 1)$$

$$\frac{dh}{dt} = \frac{dh}{dV} \cdot \frac{dV}{dt}$$

$$= \frac{4}{\pi (4h^2 + 1)} \cdot \frac{4 - 5\sqrt{h}}{100}$$

$$= \frac{4 - 5\sqrt{h}}{25\pi (4h^2 + 1)}, \text{ as required}$$

Question 3c.ii (1 mark) $\frac{dh}{dt}\Big|_{h=\frac{1}{4}} = 0.0153 \text{ ms}^{-1} \text{ (4dp)}$

Question 3d (2 marks) Let T = required time.

$$T = \int_{0}^{\frac{1}{4}} \frac{25\pi (4h^{2} + 1)}{4 - 5\sqrt{h}} dh$$

= 9.8 s (ldp)

Question 3e (2 marks) h(25) = 0.4 $h(30) = 0.4 + 5 \cdot \frac{4 - 5\sqrt{0.4}}{25\pi (4 \cdot 0.4^2 + 1)}$ = 0.43 m (2dp)

Question 3f (2 marks)

Let
$$\frac{dh}{dt} = 0$$
.
 $h = \frac{16}{25}$.
Let d = height between equilibruim depth and full depth.
 $\sqrt{3} = 16$

$$d = \frac{\sqrt{3}}{2} - \frac{16}{25} = 0.23 \text{ m} (2\text{dp})$$

Question 4a (2 marks) For yacht A, x = t + 1 and $y = t^2 + 2t$. Therefore, $y = (x - 1)^2 + 2(x - 1)$ $= x^2 - 1$.

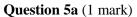
For yacht B, $x = t^2$ and $y = t^2 + 3$. Therefore, y = x + 3.

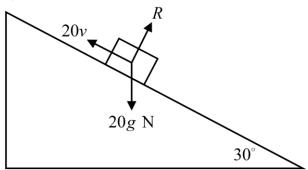
Question 4b (2 marks) Let $t^2 = t + 1$, $t \ge 0$. $t = \frac{1 + \sqrt{5}}{2}$ But, $r_A\left(\frac{1 + \sqrt{5}}{2}\right) = \frac{3 + \sqrt{5}}{2}i + \frac{5 + 3\sqrt{5}}{2}j$ and $r_B\left(\frac{1 + \sqrt{5}}{2}\right) = \frac{3 + \sqrt{5}}{2}i + \frac{9 + \sqrt{5}}{2}j$.

Hence, the yachts cannot collide, as required.

Question 4c (2 marks) Let $x + 3 = x^2 - 1$, where $x \ge 1$. $x = \frac{1 + \sqrt{17}}{2}, y = \frac{7 + \sqrt{17}}{2}$. Hence, they cross paths at (2.562, 5.562) (3dp) Question 4d (2 marks) Define $s(t) = |\dot{\mathbf{r}}_{A}(t)| - |\dot{\mathbf{r}}_{B}(t)|$. Let s(t) = 0. $t = \frac{5}{2}$. Using a graph, s(t) > 0 for $t \in \left[0, \frac{5}{2}\right]$.

Question 4e (2 marks) Let $|\underline{r}_{A}(t) - \underline{r}_{B}(t)| = \frac{1}{5}$. t = 1.52883..., 1.59734. Using a graph, $|\underline{r}_{A}(t) - \underline{r}_{B}(t)| \le \frac{1}{5}$ when $t \in [1.52883..., 1.59734...]$. Hence $|\underline{r}_{A}(t) - \underline{r}_{B}(t)| \le \frac{1}{5}$ for $T = (1.59734... - 1.52883...) \cdot 60$ = 4.1 minutes (1dp)





Question 5b.i (1 mark) $20a = 20g \sin(30^{\circ}) - 20v$

Question 5b.ii (1 mark)

 $a = g \sin(30^\circ) - v$ $= \frac{g}{2} - v$ $= \frac{g - 2v}{2}, \text{ as required.}$

Question Sc (2 marks)

$$v \frac{dv}{dx} = \frac{g - 2v}{2}, \ x(0) = 0.$$

 $x = \int_0^v \frac{2z}{g - 2z} dz$
 $= \int_0^v \left(-1 + \frac{g}{g - 2z} \right) dz$
 $= \left[-z - \frac{g}{2} \log_e(g - 2z) \right]_0^v$
 $= -v - 4.9 \log_e(9.8 - 2v) + 0 + 4.9 \log_e(9.8)$
 $= -v + 4.9 \log_e\left(\frac{4.9}{4.9 - v}\right)$

Question 5d (1 mark) Let x = 15. $v = 4.81 \text{ ms}^{-1}$ (2dp)

Question 5e.i (1 mark) Let $T = \text{time to } 4.5 \text{ ms}^{-1}$. $T = \int_0^{4.5} \frac{2}{g - 2v} dv$

Question 5e.ii (1 mark) *T* = 2.51 s (2dp)

Question 6a (1 mark) $H_0: \mu = 150$ $H_1: \mu < 150$

Question 6b (1 mark) $sd(\bar{X}) = \frac{15}{\sqrt{50}}$ $= \frac{3\sqrt{2}}{2}$

Question 6c (2 marks) $p = \Pr(\bar{X} < 145 | \mu = 150)$ = 0.0092 (4dp)

Question 6d (1 mark) H_0 should be rejected since p < 0.05. Question 6e (1 mark) Define c = smallest test statistic for which H_0 is is not rejected. $Pr(\bar{X} < c) = 0.05$ c = 146.5107... = 146.51 cm (2dp)

Question 6f (1 mark)

 $\Pr(\bar{X} > 146.5107... \mid \mu = 145) = 0.24 (2dp)$

Question 6g (1 mark)

99% CI is given by

 $\left(145 - 2.57583.... \cdot \frac{3\sqrt{2}}{2}, 145 + 2.57583.... \cdot \frac{3\sqrt{2}}{2}\right)$ =(139.5, 150.5) (1dp)

END OF PROVISIONAL SOLUTIONS