••	•				
	••••••••	•••	•••••	** * **	

Online & home tutors Registered business name: itute ABN: 96 297 924 083

Specialist Mathematics

2019

Trial Examination I (1 hour)

© Copyright itute 2018

Instructions

Answer all questions. Do not use calculators.

Unless otherwise specified, an **exact** answer is required to a question.

Unless otherwise indicated, the diagrams in this exam are not drawn to scale.

In questions where more than one mark is available, show appropriate working or explanation. Take the **acceleration due to gravity** to have magnitude $g \text{ m s}^{-2}$, where g = 9.8

Question 1 Consider $f(x) = \frac{x^2}{4} - \frac{4}{3x^2}$.

a. Determine the asymptotic behaviour, axis intercepts, nature and coordinates of stationary points, and coordinates of points of inflection of f(x).

4 marks

b. Sketch the graph of $f(x) = \frac{x^2}{4} - \frac{4}{3x^2}$. Include features found in part a. 2 marks $1 + \frac{1}{4} + \frac{1}{3x^2} + \frac{1}{4} + \frac{1}{3x^2} + \frac{1}{4} + \frac{1}{$

Question 2 Evaluate
$$\int_{0}^{1} \left(\frac{xe^{x^2}}{1+e^{x^2}}\right) dx$$
. Hint: Let $u = 1 + e^{x^2}$. 3 marks
Question 3 $-\frac{\sqrt{6}}{2} + i\frac{\sqrt{2}}{2}$ is a root of $z^6 + n = 0$ where n is a positive integer.
a. Show that $n = 8$. 2 marks
b. Find the other roots of $z^6 + n = 0$. 2 marks

Question 4 $\tilde{p} = \sqrt{2}\tilde{i} - 2\tilde{j} + \sqrt{3}\tilde{k}$ is perpendicular to $\tilde{q} = \alpha\tilde{j} - \beta\tilde{k}$ where $\alpha, \beta \in R$. a. Show that $\frac{\alpha}{\beta} = -\frac{\sqrt{3}}{2}$. 1 mark

b. The angle between \tilde{p} and \tilde{j} is θ . Evaluate $\cos \theta$. 1 mark

c. In terms of β only, find a possible \tilde{r} such that \tilde{p} , \tilde{q} and \tilde{r} are linearly dependent. 2 marks

Question 5 Solve $\frac{dy}{dx} = -\frac{x(y^2 - 1)}{y(x^2 - 1)}$ for y in terms of x, given that (-2, 2) satisfies the relation. 4 marks

Question 6 In the following diagram, *M* is the midpoint of line segment *AB*, and point *N* divides line segment *CM* into a ratio of 4:1. $\overrightarrow{OA} = \widetilde{a}$ and $\overrightarrow{OB} = \widetilde{b}$. Express \overrightarrow{AN} in terms of \widetilde{a} and \widetilde{b} . 3 marks

Question 7 Solve for x.

`

a.
$$\sin^2\left(-\frac{\pi}{x}\right) - \cos^2\left(\frac{\pi}{x}\right) = \frac{1}{2}$$
 where $x \in [-1, 1]$ 2 marks

b.
$$\sin^{-1}\left(\frac{x}{\pi}\right) - \cos^{-1}\left(-\frac{x}{\pi}\right) = \frac{\pi}{2}$$
 where $x \in [-\pi, \pi]$ 3 marks

Question 8 Show that $y(x^2-1)=2x(y^2-1)$ has the same gradient at (-1, -1), (-1, 1), (1, 1) and (1, -1).

3 marks

Question 9 A 1-kg mass is pulled by a 9.8-newton force at 60° angle to the horizontal floor. The mass remains at rest on the floor.

The reaction force of the floor on the mass makes an acute angle of θ° to the horizontal. Determine the exact value of $\tan \theta^{\circ}$.

3 marks

Question 10 A factory produces nuts and bolts. Random variables X and Y are nut weight and bolt weight respectively. Bolts are produced to fit nuts such that Y = 3(X + 10), $\mu_x = 55$ and $\sigma_x = 2$. Weights are measured in grams.

Calculate σ_{y} . a.

The factory packages its products in bags containing 2 nuts and 2 bolts in each bag. b. Let random variable *W* be the total weight of a bag of 2 nuts and 2 bolts. Ignore the weight of packaging bag. Show that $\mu_w = 500$ and $\sigma_w = 16$. 2 marks

100 bags (of 2 nuts and 2 bolts) are sampled randomly. 50 random samples in total are taken. The distribution of \overline{W} across the 50 samples is approximately normal.

Show that 1.6 is the standard deviation of \overline{W} across the samples. 1 mark c.

Estimate $Pr(484 < \overline{W} < 516)$. d.

End of Exam 1 7

1 mark

1 mark