The Mathematical Association of Victoria

Trial Exam 2019

SPECIALIST MATHEMATICS

Written Examination 1

STUDENT NAME

Reading time: 15 minutes Writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of Book

Number of questions	Number of questions to be answered	Number of marks
9	9	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers,
- Students are NOT permitted to bring into the examination room: any technology (calculators or software) notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 14 pages
- Formula sheet.
- Working space is provided throughout the book

Instructions

- Write your **name** in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

Instructions

Answer all questions in the space provided.

Unless otherwise specified, an **exact** answer is required to a question.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Take the acceleration due to gravity to have magnitude $g \text{ ms}^{-2}$ where g = 9.8.

Question 1 (3 marks)

Let $z^3 + 2iz^2 + bz - i = 0$, $z \in C$, where *b* is a real constant.

Given that z = -i is a solution to the equation, find all other solutions.

Question 2 (3 marks)

Find the gradient of the line perpendicular to the graph of

$$x\sin(2y) - y\cos(x) + x = \frac{\pi}{2}$$

at the point where y = 0.

Question 3 (4 marks)

The acceleration of a train can vary between -2.4 ms^{-2} and 0.3 ms^{-2} .

The train travels in a straight line from rest at one station to rest at the next station that is 3 km away. Find in seconds the minimum travel time of the train.

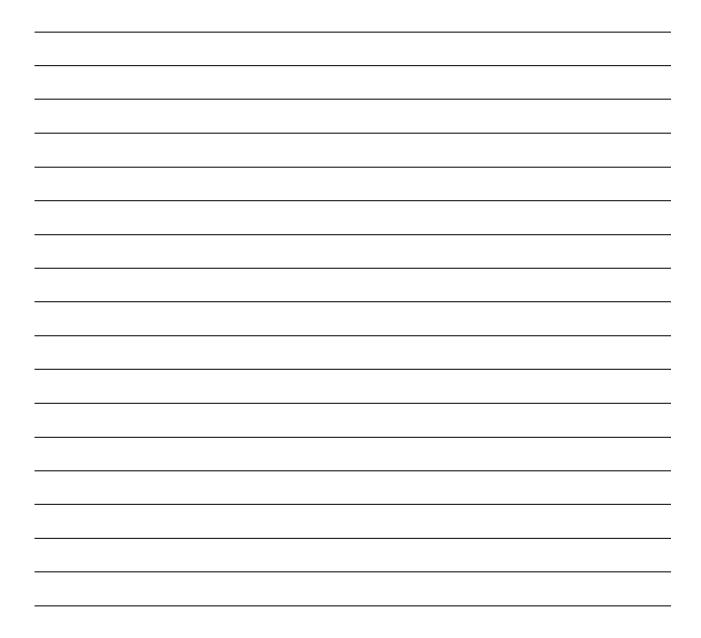
_

Question 4 (3 marks)

The mass, in grams, of apricots grown on a farm is normally distributed with a mean of 10 and a standard deviation of 2. The farm sells the apricots in paper bags but the bags rip if the total mass of apricots inside them is greater than 120 grams.

Let *n* be the maximum number of apricots a paper bag can hold without ripping with a probability greater than 0.84. Let *Z* be the standard normal random variable. Using the fact that, correct to two decimal places, Pr(Z < 1) = 0.84, an equation that can be used to find *n* is $25n^2 + an + b = 0$ where *a* and *b* are integers.

Find the values of *a* and *b*.



Question 5 (3 marks)

The altitude of a triangle is decreasing at a rate of 2 cm/min while its area is increasing at a rate of 3 cm^2 /min.

Find, in cm/min, the rate at which the base of the triangle is changing when its altitude is 10 cm and its area is 100 cm^2 .

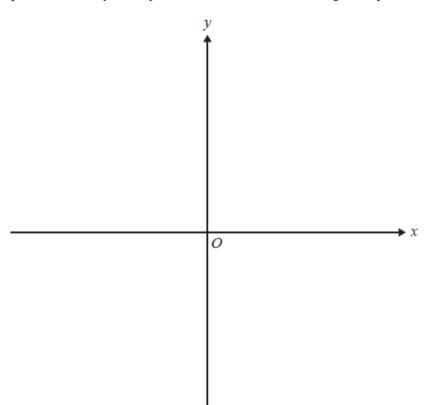
Question 6 (5 marks)

The position vector of an object moving along a curve at time *t* seconds is given by

$$\mathbf{r}(t) = (t^2 - 2t)\mathbf{i} + (t - 1)\mathbf{j}, \ 0 \le t \le 2$$

where distances are measured in metres and time is measured in seconds.

a. Sketch the path followed by the object on the axes below, labelling all important features. 3 marks



Working space

0
y

b.	Find the cartesian coordinates of the point on the path where the velocity and acceleration of the
	object are perpendicular.

2 marks

Question 7 (5 marks)

a. Prove the identity
$$2 \sec(\theta) = \frac{\sec^2\left(\frac{\theta}{2} + \frac{\pi}{4}\right)}{\tan\left(\frac{\theta}{2} + \frac{\pi}{4}\right)}, \ \theta \in \left[0, \frac{\pi}{2}\right]$$
 2 marks

b. Hence or otherwise find the arc length of the curve $y = \log_e(\cos(x))$ from x = 0 to $x = \frac{\pi}{6}$.

3 marks

Question 8 (10 marks)

a. Find the derivative of $\sin^{-1}\left(\frac{2}{x-1}\right)$. Give your answer in the form $\frac{a}{k(x)\sqrt{(x+b)(x+c)}}$ where *a*,*b*,*c* are integers and *k*(*x*) is a function. 3 marks

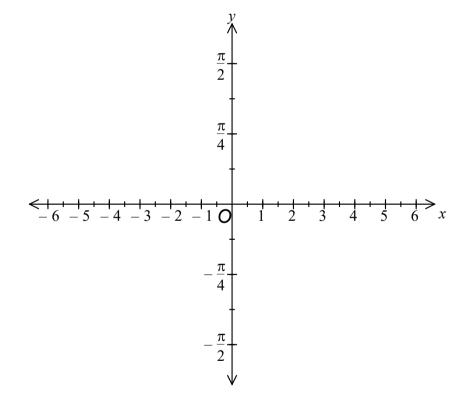
Consider the function $f: D \to R$, where $f(x) = \sin^{-1}\left(\frac{2}{x-1}\right)$ and D is the maximal domain of f.

b. Determine the maximal domain D and range of f.

3 marks

3 marks

c. Sketch the graph of y = f(x) on the axes provided below, labelling any asymptotes with their equation and any endpoints with their coordinates.



d. Consider the differential equation $\frac{dy}{dx} = \sin^{-1}\left(\frac{2}{x-1}\right)$ and y(4) = -2.

Euler's method with a step size of 0.1 is used to find an approximate value of y when x = 5.

Explain whether this approximate value will be an overestimate or an underestimate of the exact value of *y*. Do **not** attempt to use Euler's method or to solve the differential equation. 1 mark

Question 9 (4 marks)

Let
$$I = \int \frac{e^{\frac{x}{2}}}{\sqrt{3e^{-x} - e^x + 4}} dx$$

a. By making the substitution $u = e^x$, show that $I = \int \frac{1}{\sqrt{3 + 4u - u^2}} du$. 2 marks

b. Hence evaluate I in terms of x.

2 marks

END OF QUESTION AND ANSWER BOOK