

Fortify Sample Exam A1

SPECIALIST MATHEMATICS Written examination 1

Reading time: 15 minutes Writing time: 1 hour

QUESTION AND ANSWER BOOK

Number of questions	Number of questions to be answered	Number of marks
10	10	40

Structure of book

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer booklet of 7 pages.
- Formula sheet.
- Working space is provided throughout the book.

Instructions

- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- All written responses must be in English.

At the end of the examination

• You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

© TRIUMPH PUBLICATIONS 2019

THIS PAGE IS BLANK

Instructions

Answer **all** questions in the spaces provided.

Unless otherwise specified, an **exact** answer is required to a question.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Take the acceleration due to gravity to have magnitude $g \text{ ms}^{-2}$, where g = 9.8.

Question 1 (5 marks)

a. Simplify $\frac{\sqrt{3}-i}{(\sqrt{2}+\sqrt{2}i)^5}$, and express the answer in the form of acis(b), where a and b 3 marks are real numbers.

b. Solve the equation $z^2 + 2z + 5 = 0$ over $z \in C$.

2 marks

Question 2 (2 marks)

A sample of 49 batteries was found to last an average of 15 hours. If the standard deviation of batter life is known to be 20 minutes, then find the 95% confidence interval for the mean time that the battery will last. Give your answer in the form $a \pm b$ where a and b are real constants.

Question 3 (4 marks)

Find the equation of the normal to the curve given by $\sin(y) = \cos^2(x)$ at the point $\left(\frac{\pi}{4}, \frac{\pi}{6}\right)$.

Question 4 (3 marks)

A particle moves under a force \underline{F} so that its position vector \underline{r} at any time t is given by $\underline{r} = \cos(t)\underline{i} + t^2\underline{j} + e^{2t}\underline{k}$. Distances are measured in metres and time is measured in seconds.

Calculate the magnitude of the acceleration at π seconds.

Question 5 (4 marks)

Find the volume of the solid of revolution when the region bound by the curve $y = \log_e(3 - x)$, the *x*-axis and the *y*-axis is rotated about the *y*-axis.

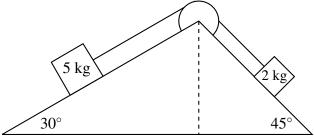
Question 6 (4 marks)
Consider the vectors $\mathbf{a} = 2\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ and $\mathbf{b} = 2\mathbf{i} - \mathbf{j} + 3\mathbf{k}$. Find the vector resolute of b in the lirection of a.

Question 7 (4 marks)

The rate of radioactive decay for a particular substance is proportional to the amount Q of the substance at any time t. The differential equation for this situation is $\frac{dQ}{dt} = -kQ$, where k is a constant.

Given that Q = 20 when t = 0 and Q = 10 when t = 5, find an equation for Q in terms of t.

Question 8 (4 marks)


Find the area under the curve $y = \frac{e^x}{e^{2x} - 2e^x + 1}$ from x = 1 to x = 2. Express your answer as a single fraction.

2 marks

2 marks

Question 9 (4 marks)
Let
$$f(x) = \frac{1}{\arccos(x)}$$
. Find $f'(x)$ and define the domain of which $f'(x)$ is defined.

7

a. Show all forces acting on both masses on the diagram.

b. Find the acceleration of the 5 kg mass down the plan in terms of g. 2 marks

c. Find the tension in the rope in terms of g.

END OF QUESTION AND ANSWER BOOK

SPECIALIST MATHEMATICS

Written examination 1

FORMULA SHEET

Instructions

This formula sheet is provided for your reference. A question and answer book is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

© TRIUMPH PUBLICATIONS 2019

Formula Sheet

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$
curved surface area of a cylinder	$2\pi rh$
volume of a cylinder	$\pi r^2 h$
volume of a cone	$\frac{1}{3}\pi r^2 h$
volume of a pyramid	$\frac{1}{3}Ah$
volume of a sphere	$\frac{4}{3}\pi r^3$
area of a triangle	$\frac{1}{2}bc\sin(A)$
sine rule	$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$
cosine rule	$c^{2} = a^{2} + b^{2} - 2ab\cos(C)$

Circular functions

$\cos^2(x) + \sin^2(x) = 1$	
$1 + \tan^2(x) = \sec^2(x)$	$\cot^2(x) + 1 = \csc^2(x)$
$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$	$\sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y)$
$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$	$\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y)$
$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$	$\tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$
$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$	
$\sin(2x) = 2\sin(x)\cos(x)$	$\tan(2x) = \frac{2\tan(x)}{1-\tan^2(x)}$

${\bf Circular\ functions-continued}$

Function	\sin^{-1} or \arcsin	\cos^{-1} or arccos	\tan^{-1} or \arctan
Domain	[-1, 1]	[-1, 1]	R
Range	$\left[-\frac{\pi}{2}, \ \frac{\pi}{2}\right]$	$[0,\pi]$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Algebra (complex numbers)

$z = x + iy = r(\cos(\theta) + i\sin(\theta)) = r\operatorname{cis}(\theta)$	
$ z = \sqrt{x^2 + y^2} = r$	$-\pi < \operatorname{Arg}(z) \le \pi$
$z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)$	$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$
$z^n = r^n \operatorname{cis}(n\theta)$ (de Moivre's theorem)	

Probability and statistics

for random variables X and Y	E(aX + b) = aE(X) + b E(aX + bY) = aE(X) + bE(Y) $var(aX + b) = a^{2}var(X)$
for independent random variables X and Y	$\operatorname{var}(aX + bY) = a^2 \operatorname{var}(X) + b^2 \operatorname{var}(Y)$
approximate confidence interval for μ	$\left(\bar{x} - z \frac{s}{\sqrt{n}}, \ \bar{x} + z \frac{s}{\sqrt{n}}\right)$
distribution of sample mean \bar{X}	mean $E(\bar{X}) = \mu$ variance $var(\bar{X}) = \frac{\sigma^2}{n}$

Calculus

$\frac{d}{dx}(x^n) = nx^{n-1}$	$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$
$\frac{d}{dx}(e^{ax}) = ae^{ax}$	$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$
$\frac{d}{dx}(\log_{e}(x)) = \frac{1}{x}$	$\int \frac{1}{x} dx = \log_{\mathbf{e}} x + c$
$\frac{d}{dx}(\sin(ax)) = a\cos(ax)$	$\int \sin(ax) dx = -\frac{1}{a} \cos(ax) + c$
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$	$\int \cos(ax) dx = \frac{1}{a} \sin(ax) + c$
$\frac{d}{dx}(\tan(ax)) = a\sec^2(ax)$	$\int \sec^2(ax) dx = \frac{1}{a} \tan(ax) + c$
$\frac{d}{dx}\left(\sin^{-1}(x)\right) = \frac{1}{\sqrt{1-x^2}}$	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}\left(\frac{x}{a}\right) + c, \ a > 0$
$\frac{d}{dx}\left(\cos^{-1}(x)\right) = \frac{-1}{\sqrt{1-x^2}}$	$\int \frac{-1}{\sqrt{a^2 - x^2}} dx = \cos^{-1}\left(\frac{x}{a}\right) + c, \ a > 0$
$\frac{d}{dx}\left(\tan^{-1}(x)\right) = \frac{1}{1+x^2}$	$\int \frac{a}{a^2 + x^2} dx = \tan^{-1}\left(\frac{x}{a}\right) + c$
	$\int (ax+b)^n dx = \frac{1}{a(n+1)}(ax+b)^{n+1} + c, \ n \neq -1$
	$\int (ax+b)^{-1} dx = \frac{1}{a} \log_e ax+b + c$
produce rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$
quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$
Euler's method	If $\frac{dy}{dx} = f(x)$, $x_0 = a$ and $y_0 = b$, then $x_{n+1} = x_n + h$ and $y_{n+1} = y_n + hf(x_n)$
acceleration	$a = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$
arc length	$\int_{x_1}^{x_2} \sqrt{1 + (f'(x))^2} dx \text{ or } \int_{t_1}^{t_2} \sqrt{(x'(t))^2 + (y'(t))^2} dt$

Vectors in two and three dimensions

$$\begin{split} \mathbf{r} &= x\mathbf{j} + \mathbf{j} + z\mathbf{k} \\ |\mathbf{r}| &= \sqrt{x^2 + y^2 + z^2} = r \\ \mathbf{\dot{r}} &= \frac{d\mathbf{r}}{dt} = \frac{dx}{dt}\mathbf{\dot{i}} + \frac{dy}{dt}\mathbf{\dot{j}} + \frac{dz}{dt}\mathbf{\dot{k}} \\ \mathbf{r}_1 \cdot \mathbf{r}_2 &= r_1 r_2 \cos(\theta) = x_1 x_2 + y_1 y_2 + z_1 z_2 \end{split}$$

Mechanics

momentum	$\mathbf{\tilde{p}}=m\mathbf{\tilde{y}}$
equation of motion	$\mathbf{\tilde{R}}=m\mathbf{\tilde{a}}$