

Victorian Certificate of Education – Free Trial Examinations

SPECIALIST MATHEMATICS Free Trial Written Examination 1

SUGGESTED SOLUTIONS AND MARKING GUIDE BOOK

Abbreviations and Acronyms

nDP – correct to n decimal places

Marking instructions

- The relevant line(s) of working marked give an indication of what statement should be made in order to obtain that mark, but this is subject to the marker's discretion.
- Any mark related to the method can only be awarded if the student presents a convincing (and rigorous) argument.
- The final answer mark (if any) can only be awarded if the student provides the correct answer in either simplest form or the form required.
- Consequential marks can only be obtained for marks related to the method, not for any final answer.
- If elementary mathematical steps and/or logic are broken within a solution, it must be properly justified in order to obtain full marks.

Miscellaneous notes

Some questions may have multiple methods/solutions, including some that are beyond the scope of the course. The solutions provided are the ones that were intended by the examination authors.

Copyright © 2019 TWM Publications (Free Specialist Mathematics Trial Written Examination 1 – Suggested Solutions and Marking Guide Book) For any questions, concerns and/or possible errors, please contact us via the contact form on our website.

Version 2 (July 2019)

Question 1a (1 mark)

Mark	Criteria
1	Provides correct answer
	R 45° 30° $12g$ N

Question 1b (1 mark)

Mark	Criteria	
1	Writes down equation relating F and other forces	
2	Provides correct answer	

Resolving forces parallel to the plane, we have

$$F\cos(45^\circ) - 12g\sin(30^\circ) = 0$$
 Mark 1

 $\Rightarrow \frac{F}{\sqrt{2}} = 6g$ $\Rightarrow F = 6\sqrt{2}g N$

Mark 2

Mark	Criteria	
1	Utilises double-angle formulae to write down one equation to solve for $\cos(\theta)$ or $\sin(\theta)$	
2	Finds both of $cos(\theta)$ and $sin(\theta)$ (except their signs)	
3	Provides correct answer	

Using double-angle formulae, we have

$$\frac{3}{8} = 2\cos^{2}(\theta) - 1 \text{ and } \frac{3}{8} = 1 - 2\sin^{2}(\theta)$$

$$\Rightarrow \cos^{2}(\theta) = \frac{11}{16} \text{ and } \sin^{2}(\theta) = \frac{5}{16}.$$
Since $\frac{3\pi}{4} < \theta < \pi$, we must have $\cos(\theta) < 0$ and $\sin(\theta) > 0$, so
$$\cos(\theta) = \frac{-\sqrt{11}}{4} \text{ and } \sin(\theta) = \frac{\sqrt{5}}{4}.$$
Mark 2
Therefore, $\operatorname{cis}(\theta) = \frac{-\sqrt{11}}{4} + \frac{\sqrt{5}}{4}i.$
Mark 3

Question 3 (4 marks)

Mark	Criteria	
1	Utilises the chain rule and the product rule in implicit differentiation	
2	Finds expression for dy/dx , or equivalent	
3	Finds the gradient of the line perpendicular to the curve	
4	Provides correct answer	
$\left(y+x\frac{dy}{dx}\right)e^{x}$	$y = 2y \frac{dy}{dx}$ Mark 1	
	$\frac{dy}{dx} - 2y\frac{dy}{dx} = 0$	
$\Rightarrow (2y - xe^{x})$	$\left(\frac{dy}{dx}\right) = y e^{xy}$	
$\Rightarrow \frac{dy}{dx} = \frac{y}{2y}$	$\frac{e^{xy}}{-xe^{xy}}$ Mark 2	
dv	2 1	

Hence,
$$\frac{dy}{dx}\Big|_{(0,2)} = \frac{2}{4-0} = \frac{1}{2}$$
, and so the line perpedicular to the

curve at (0, 2) has gradient -2

with the equation $y-2 = -2x \implies y = 2-2x$. Mark 4

Question 4	4 (3	marks)
------------	------	--------

Mark	Criteria	
1	Finds the standard deviation of distribution of the sample mean	
2	Finds an expression for the required result in terms of the standard normal variable Z	
3	Provides correct answer	

 $P \sim N(200, 15^2)$

sd
$$(\overline{P}) = \frac{15}{\sqrt{25}} = 3 \text{ g} \Rightarrow \overline{P} \sim N(200, 3^2)$$
 Mark 1
Pr $(\overline{P} > 206) = Pr(Z > \frac{206 - 200}{3})$
= Pr $(Z > 2)$ Mark 2
= $\frac{1 - 0.955}{2}$
= $\frac{0.045}{2}$
= 0.023 (3DP) Mark 3

TURN OVER

Mark 3

Question 5 (4 marks)

Mark	Criteria
1	Converts $2 \operatorname{cis}(\pi/3)$ to cartesian form
2	Finds a quadratic factor of g using the conjugate root theorem
3	Find remaining quadratic factor by comparison or long division, or equivalent
4	Provides correct answer

$$2\operatorname{cis}\left(\frac{\pi}{3}\right) = 2\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = 1 + \sqrt{3}i$$
 Mark 1

By the conjugate root theorem, $z-1-\sqrt{3}i$ and $z-1+\sqrt{3}i$ are factors and so a quadratic factor of g is

$$(z-1-\sqrt{3}i)(z-1+\sqrt{3}i) = z^2 - z - z + 1 + 3$$

= $z^2 - 2z + 4$. Mark 2

Therefore,
$$g(z) = (z^2 - 2z + 4)(az^2 + bz + c)$$
 for some $a, b, c \in \mathbb{R}$

$$\Rightarrow \begin{cases} a = 1 \pmod{z^4 \text{ coefficient}} \\ b - 2a = -2 \pmod{z^3 \text{ coefficient}} \\ 4c = -16 \pmod{z^3 \text{ coefficient}} \end{cases}$$
$$\Rightarrow a = 1, b = 0 \text{ and } c = -4 \qquad \text{Mark 3}$$
Therefore, we have

Therefore, we have

$$g(z) = (z^{2} - 2z + 4)(z^{2} - 4)$$

= $(z - 1 - \sqrt{3}i)(z - 1 + \sqrt{3}i)(z + 2)(z - 2),$
and so the solutions of $g(z) = 0$ are

and so the solutions of g(z) = 0 are

$$z = 1 + \sqrt{3}i, \ 1 - \sqrt{3}i, \ -2, \ 2$$
 Mark 4

Question 6 (4 marks)

Mark	Criteria	
1	Writes integrand in partial fraction form	
2	Finds partial fraction decomposition constants	
3	Finds an antiderivative of the integrand	
4	Provides correct answer	
•1 ($\frac{B}{x^2} + \frac{C}{x+2} dx$, where	Mark 1
Ax(x+2)+A	$B(x+2)+Cx^2=4 \text{ for all } x \in \mathbb{R} \setminus \{-2,0\}.$	
$x \to 0 \implies 0$	$+2B+4=4 \implies B=2$	
$x \rightarrow -2 \Rightarrow 0$	$0 + 0 + 4C = 4 \implies C = 1$	Mark 2
$x=1 \implies 3A$	$+6+1=4 \implies A=-1$	
Therefore, w	e have	

$$I = \int_{1}^{2} \left(\frac{-1}{x} + \frac{2}{x^{2}} + \frac{1}{x+2} \right) dx$$

= $\left[-\log_{e} |x| - \frac{2}{x} + \log_{e} |x+2| \right]_{1}^{2}$ Mark 3
= $-\log_{e}(2) - 1 + \log_{e}(4) - (0 - 2 + \log_{e}(3))$
= $1 + \log_{e} \left(\frac{2}{3} \right)$ Mark 4

Question 7 (4 marks)

Mark	Criteria
1	Forms equation involving m
2	Finds <i>m</i>
3	Finds sine of angle AOB
4	Provides correct answer

 $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos(\theta)$, where $\theta = \angle AOB$.

$$\Rightarrow 1 - 1 + m = \sqrt{3}\sqrt{2 + m^2} \times \frac{-1}{\sqrt{6}}$$
 Mark 1
$$\Rightarrow \sqrt{2}m = -\sqrt{2 + m^2}$$

$$\Rightarrow m^2 = 2$$

$$\Rightarrow m = -\sqrt{2}, \quad \left[\text{ since } \mathbf{a} \cdot \mathbf{b} \right]_{m = \sqrt{2}} = \sqrt{2} > 0 \text{ and } \cos(\theta) < 0 \right]$$
 Mark 2
$$\sin(\theta) = \sqrt{1 - \left(\frac{-1}{\sqrt{6}}\right)^2} = \sqrt{\frac{5}{6}} \quad \left[\sin(\theta) > 0 \text{ since } 0 < \theta < \pi\right]$$
 Mark 3

Therefore, the area of the triangle *AOB* is

$$A = \frac{1}{2} |\underline{a}| |\underline{b}| \sin(\theta)$$

= $\frac{1}{2} \times \sqrt{3} \times 2\sqrt{\frac{5}{6}}$
= $\frac{\sqrt{10}}{2}$ units².

Mark	Criteria	
1	Provides a correct method	
$\frac{d}{dx} \left[\log_e \left(x + \sqrt{x} \right) \right]$	$\left[\sqrt{x^2 + k} \right] = \frac{1}{x + \sqrt{x^2 + k}} \left(1 + \frac{x}{\sqrt{x^2 + k}} \right)$ $= \frac{1}{x + \sqrt{x^2 + k}} \times \frac{\sqrt{x^2 + k} + x}{\sqrt{x^2 + k}}$ $= \frac{1}{\sqrt{x^2 + k}}, \text{ as required.}$	Mark 1

Question 8b (4 marks)

Mark	Criteria		
1	Writes down a definite integral expression	on for the volume	
2	Finds an antiderivative of one function		
3	Finds an antiderivative of other function	, or otherwise	
4	Provides correct answer		
$=\pi \int_{-\sqrt{2}}^{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}}$	$V = \pi \int_{-\sqrt{2}}^{\sqrt{2}} \frac{x+2}{\sqrt{x^2+6}} dx$ Mark 1 $= \pi \int_{-\sqrt{2}}^{\sqrt{2}} \frac{x}{\sqrt{x^2+6}} dx + \pi \int_{-\sqrt{2}}^{\sqrt{2}} \frac{2}{\sqrt{x^2+6}} dx$ integral of an odd function over a symmetric interval		
$=0+2\pi \Big[\log (1+2\pi)\Big]$	$g_e\left(x+\sqrt{x^2+6}\right)\Big]_{-\sqrt{2}}^{\sqrt{2}}$ [using part a]	Marks 2 and 3	
$= 2\pi \log_e \left(3\sqrt{2} \right) - 2\pi \log_e \left(\sqrt{2} \right)$			
$=2\pi\log_e(3)$)		
$=\pi\log_e(9)$	units ³	Mark 4	

Mark 4

Question 9a.i (1 mark)

Mark	Criteria	
1	Provides correct answer	
2	$-\cos(2t)]\underline{i} + 4 \times \frac{1}{2}[1 + \cos(2t)]\underline{j}$ (2t)] $\underline{i} + [2 + 2\cos(2t)]\underline{j}$	Mark 1

Question 9a.ii (2 marks)

Mark	Criteria
1	Finds an antiderivative of the velocity vector
2	Provides correct answer
c t	

$$\mathbf{r}(t) = \int_{0} \dot{\mathbf{r}}(\tau) d\tau + \dot{\mathbf{i}} + 2\dot{\mathbf{j}}$$
$$= \left[\left(\tau - \frac{1}{2} \sin(2\tau) \right) \dot{\mathbf{i}} + \left[2\tau + \sin(2\tau) \right] \right]_{0}^{t} + \dot{\mathbf{i}} + 2\dot{\mathbf{j}}$$
Mark 1

$$= \left(1 + t - \frac{1}{2}\sin(2t)\right) \dot{i} + [2 + 2t + \sin(2t)] \dot{j}$$
 Mark 2

Mark	Criteria	
1	Finds an expression for the force vector	
2	Removes square root from equation	
3	Provides correct answer	
$\ddot{\mathbf{r}}(t) = 2\sin(2$	$t)\dot{i}-4\sin(2t)\dot{j}$	
$\Rightarrow \mathbf{F}(t) = 10$	$\left[\sin(2t)\mathbf{i}-2\sin(2t)\mathbf{j}\right]$	Mark 1
$\Rightarrow \mathbf{\tilde{F}}(t) = 10$	$\sqrt{\sin^2(2t) + 4\sin^2(2t)}$	
=10	$\sqrt{5}\left \sin\left(2t\right)\right $	
Then, we hav	e	
$ \mathbf{F}(t) = 5\sqrt{5}$	$\Rightarrow \sin(2t) = \frac{1}{2}$	Mark 2
$\Rightarrow \sin(2t) =$	$\begin{cases} 1/2 & \text{for } 0 \le 2t < \pi \\ -1/2 & \text{for } \pi \le 2t \le 2\pi \end{cases}$	
$\Rightarrow 2t = \frac{\pi}{6}, \frac{5}{6}$	$\frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$	
$\Rightarrow t = \frac{\pi}{12}, \frac{5\pi}{12}$	$\frac{\pi}{2}, \frac{7\pi}{12}, \frac{11\pi}{12}$ seconds	Mark 3

Question 10 (4 marks)

Mark	Criteria
1	Writes down a definite integral for the arc length
2	Expands expression inside square root
3	Finds an antiderivative of the integrand
4	Provides correct answer

We have
$$\frac{dy}{dx} = \frac{e^x - e^{-x}}{2}$$
, and so the arc length is

$$L = \int_{-1}^{1} \sqrt{1 + \left(\frac{e^x - e^{-x}}{2}\right)^2} \, dx \qquad \text{Mark 1}$$

$$= \int_{-1}^{1} \sqrt{1 + \frac{1}{4} \left(e^{2x} - 2 + e^{-2x}\right)} \, dx \qquad \text{Mark 2}$$

$$= \frac{1}{2} \int_{-1}^{1} \sqrt{e^{2x} + 2 + e^{-2x}} \, dx \qquad \text{Mark 2}$$

$$= \frac{1}{2} \int_{-1}^{1} \sqrt{(e^x + e^{-x})^2} \, dx \qquad \text{Mark 3}$$

$$= \frac{1}{2} \left[e^x - e^{-x}\right]_{-1}^{1} \qquad \text{Mark 3}$$

$$= \frac{1}{2} \left(e - \frac{1}{e}\right) - \frac{1}{2} \left(\frac{1}{e} - e\right)$$

$$= e - \frac{1}{e} \text{ units} \qquad \text{Mark 4}$$

Mark 4

END OF SUGGESTED SOLUTIONS AND MARKING GUIDE BOOK

Copyright © 2019 TWM Publications (Free Specialist Mathematics Trial Written Examination 1 - Suggested Solutions and Marking Guide Book) For any questions, concerns and/or possible errors, please contact us via the contact form on our website. Version 2 (July 2019)