The Mathematical Association of Victoria

Trial Exam 2020 SPECIALIST MATHEMATICS Written Examination 1

STUDENT NAME

Reading time: 15 minutes Writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of Book

Number of questions	Number of questions to be answered	Number of marks
9	9	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers,
- Students are NOT permitted to bring into the examination room: any technology (calculators or software) notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 17 pages.
- Formula sheet.
- Working space is provided throughout the book.

Instructions

- Write your **name** in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Note: This examination was written for the Adjusted 2020 VCE Mathematics Study Design and accordingly does not include the Specialist Mathematics Area of Study 6 (Probability and Statistics).

THIS PAGE IS BLANK

Instructions

Answer **all** questions in the space provided.

Unless otherwise specified, an **exact** answer is required to a question.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Take the **acceleration due to gravity** to have magnitude $g \text{ ms}^{-2}$ where g = 9.8.

Question 1 (2 marks)

Find $\frac{dy}{dx}$ at the point where x = 0 for the curve defined by the relation $y^3 - xy + e^{-x} = -7$.

2020 MAV Specialist Mathematics Trial Exam 1

4

Question 2 (6 marks)

Let $g: D \to R$, $g(x) = x - 2 - \frac{2}{|x-1| - 2}$ where *D* is the maximal domain of *g*.

a. Find the maximal domain D of g.

2 marks

b.	Solve $g(x) = 0$.		

5

c. Express *g* as a piecewise (hybrid) function.

TURN OVER

6

Question 3 (5 marks)

a. Express $\frac{4}{4-x^2}$ in partial fraction form.

1 mark

b. Solve the differential equation $\frac{dy}{dx} = \frac{4y\cos(x)}{3+\cos^2(x)}$ given that $y(\pi) = 1$. Express your answer in the

form
$$y = \frac{a}{b - \sin(x)} + c$$
 where a, b and c are integers.

TURN OVER

8

Question 4 (3 marks)

Part of the graph of $y = \log_2(x)$ is shown below.

Sketch the graph of $y = \frac{1}{\log_2(x)}$ on the set of axes above, given that it has a point of inflection at $x = \frac{1}{e^2}$. Clearly label its asymptotes with their equation and any endpoints and points of intersection with $y = \log_2(x)$ with their coordinates.

Working space

Question 5 (3 marks)

The position vectors of two particles A and B at time t seconds after they have started moving are given by $r_{A}(t) = sin(at)i + cos(t)j$ and $r_{B}(t) = sin(t)i - cos(at)j$ respectively, where a is a positive

real constant and $t \ge 0$.

Find the two smallest possible values of *a* if the particles are moving perpendicular to each other at t = 2.

Question 6 (5 marks)

After being given an initial push, an object of mass 4 kg slides down a rough plane inclined at 30^0 to the horizontal with an acceleration of 3 ms^{-2} . After four seconds the velocity of the object is 14 ms^{-1} .

a. Find, in newtons, the size of the friction force acting on the object.

2 marks

Working space

١	Use calculus to find, in ms^{-1} , the speed of the object when it has travelled 4 metres.	3 1
-		
_		
_		
-		
_		
_		
_		
_		
_		
_		
_		
_		
-		
_		
_		
_		

Question 7 (5 marks)

a. Write the function
$$f(x) = \frac{x}{\sin(2 \arcsin(\sqrt{x}))}$$
, $0 < x < 1$, in the form $f(x) = \frac{a\sqrt{x}}{\sqrt{b-x}}$ where

where *a* and *b* are positive real constants.

b. Find the volume of the solid of revolution formed when the graph of $y = \frac{x}{\sin(2 \arcsin(\sqrt{x}))}$ is rotated about the *x*-axis over the interval $\left[\frac{1}{4}, \frac{1}{2}\right]$. 3 marks

Question 8 (6 marks)

Let $z = r \operatorname{cis}(\theta)$ be a solution to $z^n - 3i\overline{z} = 0$, $z \in C$, where $n \in Z^+$ and $n \ge 2$.

a. Find all possible values of |z|.

2 marks

b. Show that either $\theta = \frac{(1+4k)}{2(n+1)}\pi$, $k \in \mathbb{Z}$, or θ is undefined.

c.	State with	justification	the number	of solutions to	$z^{5}-3iz=0.$

1 mark

TURN	OVER

The Mathematical Association of Victoria, 2020

Question 9 (5 marks)

Find the derivative of $x^2 \arccos\left(\frac{1}{\sqrt{x}}\right)$. a.

The Mathematical	Association of	Victoria.	2020
i ne mathematical	1 100001001011 01	victoria,	2020

3 marks

b. Hence find an anti-derivative of $x \arccos\left(\frac{1}{\sqrt{x}}\right)$.