The Mathematical Association of Victoria

Trial Examination 2020

SPECIALIST MATHEMATICS

Written Examination 2

STUDENT NAME _____

Reading time: 15 minutes

Writing time: 2 hours

QUESTION & ANSWER BOOK

Structure of Book

Section	Number of	Number of questions	Number of marks
	questions	to be unswered	
А	20	20	20
В	6	6	60
			Total 80

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, a protractor, set-squares, aids for curve sketching, one bound reference, one approved technology (calculator or software) and, if desired, one scientific calculator. Calculator memory DOES NOT need to be cleared. For approved computer-based CAS, full functionality may be used.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 32 pages.
- Formula sheet
- Answer sheet for multiple-choice questions.

Instructions

- Write your **name** in the space provided above on this page.
- Write your **name** on the multiple-choice answer sheet
- Unless otherwise indicated, the diagrams are **not** drawn to scale.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Note: This examination was written for the Adjusted 2020 VCE Mathematics Study Design and accordingly does not include the Specialist Mathematics Area of Study 6 (Probability and Statistics).

THIS PAGE IS BLANK

SECTION A - Multiple-choice questions

Instructions for Section A

Answer **all** questions in pencil on the answer sheet provided for multiple-choice questions. Choose the response that is **correct** for the question. A correct answer scores 1, an incorrect answer scores 0. Marks will **not** be deducted for incorrect answers. No marks will be given if more than one answer is completed for any question. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale. Take the **acceleration due to gravity** to have magnitude $g \text{ ms}^{-2}$, where g = 9.8.

Question 1

The asymptotes of the graph of $f(x) = \frac{x^3 + 2x^2 + x - 1}{(x-1)(x+2)}$ have equations

A. x = 1, x = -2

B.
$$x = -1, x = 2$$

C.
$$y = 1 + x, x = -1, x = 2$$

- **D.** y = 1 + x, x = 1, x = -2
- **E.** y = 1 + x, x = -2

Question 2

A rule for the function whose graph is shown above could be

A.
$$f(x) = \frac{2}{\pi} \arctan(x-1) + 1$$

B.
$$f(x) = \frac{2}{\pi} \arctan(x+1) + 1$$

C.
$$f(x) = \frac{\pi}{2} \arctan(x+1) + 1$$

D.
$$f(x) = \frac{1}{\pi} \arctan(x+1) + 1$$

E. $f(x) = \frac{1}{\pi} \arctan(x-1) + 1$

SECTION A – continued TURN OVER

The maximal domain of the function with rule $f(x) = 2 \arcsin\left(\frac{x^2}{2}\right) - 1$ is

- **A.** [-1,1]
- **B.** [-1,2]
- $\mathbf{C.} \qquad \left[0, \sqrt{2}\right]$
- **D.** $\left(-\sqrt{2},\sqrt{2}\right)$
- **E.** $\left[-\sqrt{2},\sqrt{2}\right]$

Question 4

A complex number z and points P_1 , P_2 , P_3 , P_4 , P_5 are plotted on the Argand diagram below:

The complex number iz^2 is best represented by the point

- A. P_1
- **B.** P_2
- C. P_3
- **D.** P_4
- **E.** P_5

The modulus and principal argument respectively of the complex number $z = \frac{(1+i)^2}{\left(1-\sqrt{3}i\right)^3}$ are

- **A.** $\frac{1}{4}$ and $-\frac{\pi}{2}$ **B.** $\frac{1}{4}$ and $\frac{\pi}{2}$ **C.** $\frac{1}{2}$ and $-\frac{\pi}{2}$ **D.** $\frac{1}{2}$ and $\frac{\pi}{2}$
- **E.** $\frac{1}{4}$ and $-\pi$
- Question 6

The sum of all of the solutions of the equation $z^4 + z^3 - 2z^2 + 4z - 24 = 0$ is

- **A.** 1-2i
- **B.** 1+2i
- **C.** 1
- **D.** -1
- **E.** 5

Question 7

The equation of the tangent to the curve $3x^2 - xy + y^2 = 5$ at the point (1,2) is

- **A.** $y = -\frac{4}{5}x + \frac{10}{5}$
- **B.** $y = -\frac{4}{5}x + 1$
- C. $y = -\frac{4}{3}x + 1$
- **D.** $y = -\frac{4}{3}x \frac{2}{3}$
- **E.** $y = -\frac{4}{3}x + \frac{10}{3}$

SECTION A – continued TURN OVER

The length of the curve defined by the parametric equations $x(t) = \sin(4t)$, $y(t) = \cos(2t)$ between t = 0and $t = \frac{\pi}{4}$ is given by

A.
$$\int_{0}^{\frac{\pi}{4}} \sqrt{10 - 2\cos(4t) + 8\cos(8t)} dt$$

$$\mathbf{B.} \qquad \int_{0}^{\frac{\pi}{4}} \sqrt{8\cos^2(t) \left(3 - \cos(2t)\right)} \, dt$$

C.
$$\int_{0}^{\frac{\pi}{4}} \sqrt{\frac{1}{2} \left(2 + \cos(4t) - \cos(8t)\right)} dt$$

D.
$$\int_{0}^{\frac{\pi}{4}} \sqrt{10 + 2\cos(4t) + 8\cos(8t)} dt$$

E.
$$\int_{0}^{\frac{\pi}{4}} \sqrt{\frac{1}{2} \left(2 - \cos(4t) + \cos(8t)\right)} dt$$

Question 9

If $\frac{dy}{dx} = \sin\left(\frac{1}{\sqrt{x}}\right)$ and y = 5 when x = 1 then the value of y when x = 2 is closest to

- **A.** -4.266
- **B.** 3.559
- **C.** 4.293
- **D.** 5.734
- **E.** 6.559

6

The differential equation which best represents direction field shown above is

- $\mathbf{A.} \qquad \frac{dy}{dx} = \frac{xy}{1+y^2}$
- **B.** $\frac{dy}{dx} = \frac{x}{y(1+y^2)}$
- $\mathbf{C.} \qquad \frac{dy}{dx} = \frac{y}{x\left(1+y^2\right)}$
- **D.** $\frac{dy}{dx} = \frac{x}{y(1+y)}$
- **E.** $\frac{dy}{dx} = \frac{y}{x(1+y)}$

Question 11 Using a suitable substitution, the definite integral $\int_{1}^{\sqrt{e}} \frac{1}{x\sqrt{1+\log_{e} x^{2}}} dx$ is equivalent to

- $\frac{1}{2}\int_{1}^{2}\frac{1}{\sqrt{1+u}}du$ А.
- $2\int_{1}^{2}\frac{1}{\sqrt{u}}du$ B.
- $\int_{1}^{2} \frac{1}{\sqrt{u}} du$ C.
- $\frac{1}{2}\int_{1}^{2}\frac{1}{\sqrt{u}}du$ D.

$$\mathbf{E.} \qquad \frac{1}{2} \int_{1}^{\sqrt{e}} \frac{1}{\sqrt{u}} \, du$$

Question 12

An aircraft A is flying at constant height of 1500m with a speed of 90ms⁻¹ towards an observer O on the ground. The observer measures the angle of elevation θ , as shown in the diagram below.

What is the rate of change of θ in radians per second when $\theta = \frac{\pi}{3}$?

- $\frac{1}{1500}$ A.
- $\frac{\sqrt{3}}{1500}$ B.
- $\frac{1}{200}$ C.
- $\frac{3}{200}$ D.
- $\frac{9}{200}$ E.

SECTION A – continued

In the parallelogram *OABC*, $\overrightarrow{OA} = -2i + 2j + k$ and $\overrightarrow{OC} = 2i - 3j + 4k$. The acute angle between the diagonals of the parallelogram is closest to

- **A.** 56.31°
- **B.** 23.69°
- **C.** 33.69°
- **D.** 87.59°
- **E.** 24.31°

Question 14

The vectors $\mathbf{i} + p^2 \mathbf{j} + 3\mathbf{k}$, $-2\mathbf{i} + 6\mathbf{j} + 2\mathbf{k}$ and $2\mathbf{i} + \mathbf{j} - \mathbf{k}$, where *p* is a real constant, are linearly independent if

- **A.** p = 5
- **B.** $p \in R \setminus \{-5,5\}$
- **C.** $p \in \{-5, 5\}$
- **D.** p = -5
- **E.** $p \in R$

Two masses of m kg and (m-3) kg are connected by a light inextensible string which passes over a smooth pulley as shown below.

If the acceleration of the system is 2 ms^{-2} then the value of *m* is

А.	$\frac{3g-6}{2}$
B.	$\frac{3g+6}{2}$
C.	$\frac{3g+6}{4}$
D.	$\frac{3g-6}{4}$
E.	$\frac{3g-3}{1}$

4

A mass of 5 kg is pulled up a smooth plane inclined at an angle of θ° to the horizontal by a force of 40 Newtons, as shown in the diagram below.

The mass accelerates at 3.5ms^{-2} up the plane. The value of θ in degrees is closest to:

- **A.** 27.33°
- **B.** 62.67°
- **C.** 20.14°
- **D.** 35.78°
- **E.** 21.54°

Question 17

A particle of mass 2 kg is initially travelling with velocity $5i \text{ ms}^{-1}$. A force of 6j Newtons is applied to the particle for a period of 4 seconds.

The magnitude of the momentum of the particle in kg ms^{-1} after the force is removed is

- **A.** 13
- **B.** 26
- **C.** $2\sqrt{41}$
- **D.** $\sqrt{581}$
- **E.** $2\sqrt{581}$

The component of a = 3i + j - 5k perpendicular to b = i + 2j - 3k is

- **A.** $\frac{1}{7} \left(-5i + 10j k \right)$
- **B.** $\frac{1}{7} \left(12i + 4j 20k \right)$
- $\mathbf{C.} \qquad -2\mathbf{\underline{i}} + \mathbf{\underline{j}} + 2\mathbf{\underline{k}}$
- $\mathbf{D.} \qquad \frac{1}{\sqrt{7}} \left(11\underline{i} 13\underline{j} 5\underline{k} \right)$

E.
$$\frac{1}{7} (11\underline{i} - 13\underline{j} - 5\underline{k})$$

Question 19

A body is travelling in a straight line. Its velocity vms^{-1} is given by v = 3 - x when it is x m from the origin at time t seconds. Given x = 2 when t = 1, the rule relating x to t is given by

- A. $x = \log_e (2-t) + 2$
- **B.** $x = 3 e^{1-t}$
- C. $x = 3 e^{t-1}$
- **D.** $x = \frac{3}{t}$
- **E.** $x = 3 + e^{1-t}$

A mass of 5 kg is suspended on a light inextensible string from a point O on a horizontal ceiling. When a horizontal force of F newtons is applied to the mass the string makes an angle of 70° with the horizontal ceiling as shown in the diagram below.

If the tension in the string is T newtons then the values of T and F respectively in newtons and correct to three decimal places are

- **A.** 52.145 and 17.835
- **B.** 143.266 and 134.626
- **C.** 46.045 and 15.748
- **D.** 16.759 and 15.748
- **E.** 46.045 and 134.626

SECTION B

Instructions for Section B

Answer all questions in the spaces provided.

Unless otherwise specified, an exact answer is required to a question.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Take the **acceleration due to gravity** to have magnitude $g \text{ ms}^{-2}$, where g = 9.8.

Question 1 (10 marks)

Let $f: D \to R$, $f(x) = \frac{\sqrt{x}}{1+x^2}$ where *D* is the maximal domain of *f*.

a. Find D.

b. Find f'(x) and hence write down the coordinates of the stationary point.

2 marks

c.

i. Write down a quartic equation which can be solved to give the *x*-coordinate of the point of inflection of *f*.
I mark

15

16

d. Sketch the graph of y = f(x) on the axes below. Include the coordinates of the stationary point and the point of inflection. 3 marks

- e. The region bounded by the graph of f, the x-axis and the line x = a, where a > 0, is rotated about the x-axis to form a solid of revolution of volume $\frac{\pi}{12}$.
 - i. Write down an equation involving a definite integral that can be used to calculate the value of a. 1 mark

ii. Hence find the value of a.

I the cartesian equation of the circle $C_1 = \{z : z-2 =2\}$.	1 mar
Show that the solutions of $z^2 - 6z + 12 = 0$ are $z = 3 \pm \sqrt{3}i$.	1 mar
Show that $z_1 = 3 + \sqrt{3}i$ lies on the circle C_1 .	1 mai
	I the cartesian equation of the circle $C_1 = \{z : z-2 =2\}$. Show that the solutions of $z^2 - 6z + 12 = 0$ are $z = 3 \pm \sqrt{3}i$. Show that $z_1 = 3 + \sqrt{3}i$ lies on the circle C_1 .

- **c.** On the Argand diagram below:
 - i.Sketch the circle C_1 .1 markii.Plot the solutions of $z^2 6z + 12 = 0$.1 mark

The circle C_2 given by the relation $|z - 2\sqrt{3}i| = 2\sqrt{3}$ intersects the circle C_1 at the origin and at z_1 .

d. Sketch the circle C_2 and the line l which passes through the points of intersection of the circles C_1 and C_2 on the Argand diagram given in **part c.**

e. The line *l* which passes through the points of intersection of the circles C_1 and C_2 can be written in the form $|z-2| = |z-\alpha|$ where $\alpha \in C$. Find α . 1 mark

f. Find the area of the region common to both of the circles C_1 and C_2 . Give your answer correct to three decimal places. 2 marks

Question 3 (10 marks)

The temperature x(t) in a room satisfies the differential equation

$$\frac{dx}{dt} = -k\left(x - 20\right)$$

where x is measured in degrees and $t \ge 0$ is measured in minutes. The temperature in the room is initially 12° C.

a. If x(20) = 18, find the value of k.

In a second room a different heating system is used. The temperature in this room satisfies the differential equation

$$\frac{dx}{dt} = -\frac{1}{10}(x-20) + 2e^{-\frac{1}{10}t}, \ t \ge 0.$$

b. Verify by differentiation that $x(t) = 20 + 2te^{-\frac{1}{10}t} - 8e^{-\frac{1}{10}t}$ satisfies the differential equation, subject to the initial condition x(0) = 12.

c. Find, correct to three decimal places, the maximum temperature in the second room and the time in seconds after t = 0 that this maximum temperature occurs. 2 marks

d. Sketch the graph of *x* versus *t* for the second room on the axes below. Label the stationary point and any asymptotes. 3 marks

22

In a third room the temperature satisfies the differential equation

$$\frac{dx}{dt} = -\frac{1}{10}(x-20) + \frac{1}{2}e^{-\frac{\sqrt{x}}{10}}, \ t \ge 0.$$

Assume that x(0) = 12.

i. Write down an integral that can be used to determine the time in minutes after t = 0 that e. the temperature in the third room is $r^{\circ}C$. 1 mark

ii. Hence determine how long after t = 0 it takes for the temperature in the third room to reach 18°C. Give your answer in minutes, correct to three decimal places. 1 mark

Question 4 (8 marks)

Relative to a fixed origin O, the vertices A, B and C of the triangle shown below have position vectors a,

b and c respectively.

a. Show that the position vector of the midpoint *M* of side *BC* of this triangle is $m = \frac{1}{2} \left(b + c \right)$. 1 mark

Points lying on the line passing through A and M have a position vector given by $\mathbf{r}_A = a + AM t$, $t \in R$.

b. Show that $\mathbf{r}_A = (1-t) a + \frac{t}{2} \left(b + c \right)$.

2 marks

24

c. Hence show that $\mathbf{r}_A = \left(1 - \frac{3}{2}t\right)a + \frac{t}{2}\left(a + b + c\right).$

d. State in terms of a, b and c the position vector:

- i. r_B of points lying on the line passing through *B* and the midpoint of side *AC*. 1 mark
- **ii.** r_C of points lying on the line passing through *C* and the midpoint of side *AB*. 1 mark $\tilde{}$
- e. Hence show that the medians of a triangle intersect in a point and state the position vector of this point in terms of *a*, *b* and *c*. 2 marks

Question 5 (11 marks)

An object of mass 5 kg is initially held at rest on a smooth plane inclined at an angle α to the horizontal. The mass is connected by a light inextensible string passing over a light smooth pulley to a freely hanging bucket of water of mass *m* kg.

a. Show that after it is released, the 5 kg object moves down the plane if $m < 5\sin(\alpha)$. 2 marks

b. Find, correct to two decimal places, the value of *m* if $tan(\alpha) = \frac{12}{5}$ and the 5 kg object moves up the plane with an acceleration of 0.5 ms⁻² after it is released. 2 marks

SECTION B – Question 5 - continued

Take $\tan(\alpha) = \frac{12}{5}$.

- **c.** The mass of the bucket of water is initially 6 kg but once the 5 kg object is released, water begins to leak from the bottom of the bucket at a rate of 0.1 kg per second.
 - i. At what times after the release of the 5 kg object does the bucket have an acceleration of magnitude 0.2 ms^{-2} ? Give your answers correct to two decimal places. 4 marks

ii.

ter it is released.	3 m
	_
	_
	-

Question 6 (11 marks)

Let the complex function $w = \cos(x) + i\sin(x)$, where $x \in R$ and $i^2 = -1$.

a. i. Show that
$$\frac{dv}{dx} = iv$$
. I mark

TURN OVER

© The Mathematical Association of Victoria, 2020

Let sin(x) = p where $p \in [-1, 1]$. Show that $\left(e^{ix}\right)^2 - 2ipe^{ix} - 1 = 0.$ i. 1 mark c. By defining $\sin^{-1}(0) = 0$, show that $\sin^{-1}(p) = -i \log_e \left(\sqrt{1 - p^2} + ip \right)$. ii. 2 marks iii. Let $z = r \operatorname{cis}(\theta)$ where θ is the principal argument of z. Show that $\log_e(z) = \log_e(r) + i\theta$.

d. Hence show that $\sin^{-1}(1) = \frac{\pi}{2}$.

1 mark

Show that $-i \log \left(\sqrt{1-n^2} + in \right)$ is real for $n \in [-1, 1]$ and non-real otherwise	2
Show that $i \log_e(\sqrt{1-p} + ip)$ is real for $p \in [-1, 1]$ and non-real otherwise.	