The Mathematical Association of Victoria

Trial Exam 2021 SPECIALIST MATHEMATICS Written Examination 1

STUDENT NAME

Reading time: 15 minutes Writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of Book

Number of questions	Number of questions to be answered	Number of marks
10	10	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers,
- Students are NOT permitted to bring into the examination room: any technology (calculators or software) notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 15 pages.
- Formula sheet.
- Working space is provided throughout the book.

Instructions

- Write your **name** in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

Instructions

Answer **all** questions in the space provided. Unless otherwise specified, an **exact** answer is required to a question. In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale. Take the **acceleration due to gravity** to have magnitude $g \text{ ms}^{-2}$ where g = 9.8.

Question 1 (2 marks)

Consider the curve defined by the relation $axy^3 + bx^3y = 1$ where *a* and *b* are real constants. Find the values of *a* and *b* if the gradient of the curve at the point (1, 1) is equal to -1.

TURN OVER

Question 2 (6 marks)

A 20 kg parcel sits on a set of bathroom scales in a stationary lift. The lift begins moving upwards from rest with an acceleration $\frac{1}{3}\sqrt{25-v^2}$ where v ms⁻¹ is its speed t seconds after it starts moving.

a. State the maximum speed of the lift.

1 mark

Once the lift reaches its maximum speed the acceleration changes to $-\frac{1}{3}\sqrt{10v-v^2}$ ms⁻² and the lift slows down.

b. Find, in terms of g and in units of Newton, the magnitude of the force exerted on the scales by the parcel when the lift is slowing down and has a speed of 2 ms^{-1} . 2 marks

c.	Find, in terms of g and in units of Newton, the magnitude of the force exerted on the scales by	
	the parcel $\frac{\pi}{2}$ seconds after the lift starts slowing down.	3 marks

2		

Question 3 (3 marks)

Let $z^4 + az^3 + bz^2 - 4z + 6 = 0$, $z \in C$, where *a* and *b* are real constants.

Given that z = i is a solution to the equation, find all other solutions.

Question 4 (3 marks)

Bottles of the sports drink *Revitalise* have a volume that varies normally with a mean of 750 ml and a standard deviation of 15 ml. *Revitalise* is sold in packs of four bottles.

Find the approximate probability that the volume of a randomly selected four-bottle pack of *Revitalise* is between 2940 ml and 3000 ml. Give your answer correct to three decimal places.

8

Question 5 (5 marks)

Let the function $f(x) = \frac{1}{2 + e^{-x}}$.

a. Find the equations of all asymptotes of the function.

2 marks

b. Prove that the function has a point of inflection and find the *x*-coordinate of that point. 3 marks

9

Question 6 (3 marks)

Evaluate
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \tan^4(x) dx$$
.

TURN OVER

Question 7 (3 marks)

a. Let the function $f: (-3, 3) \rightarrow R$, $f(x) = \csc\left(\frac{\pi x}{3}\right) + 1$.

Sketch the graph of y = f(x) on the axes provided below, labelling any intercepts and endpoints with their coordinates and any asymptotes with their equation. 1 mark

Working space

TURN OVER

b. Solve the equation
$$f(x) = \frac{|x+2|}{x+2}$$
 for x. 2 marks

Question 8 (8 marks)

The position vectors of two particles A and B at time t seconds after they have started moving are given by $r_A(t) = 3t i + (t-4) j$ and $r_B(t) = (6-6\cos(\alpha t))i + 6\sin(\alpha t) j$ respectively, where α is a positive real constant and $t \ge 0$.

a. Find the times at which it is possible for a collision between the particles to occur.

3 marks

b. Find the values of α for which the particles will collide at the largest time found in **part a**. 2 marks

c.	Find the values of $tan(\alpha)$ if the particles are moving in directions perpendicular to each other	
	at time $t = 2$.	3 marks

Question 9 (4 marks)

By making the substitution $u = \sqrt{1 + e^{2x}}$ in an appropriate integral, find the arc length of the curve $y = e^x$ from x = 0 to $x = \log_e \sqrt{3}$.

Give your answer in the form $(a - \sqrt{a}) - \frac{1}{a} \log_e (b - 6\sqrt{a})$ where a and b are positive integers.

Question 10 (3 marks)

Let $\operatorname{sec}(\beta) = b$ where $\beta \in \left(\frac{\pi}{2}, \pi\right]$.

Solve $\operatorname{cosec}(2x) = -b$ in terms of β for $x \in [-\pi, \pi]$.

END OF QUESTION AND ANSWER BOOK