The Mathematical Association of Victoria

SPECIALIST MATHEMATICS 2021 Trial Written Examination 2 - SOLUTIONS

SECTION A – Multiple-choice questions

ANSWERS

1	2	3	4	5	6	7	8	9	10
С	D	В	А	Е	С	Е	В	А	D

11	12	13	14	15	16	17	18	19	20
С	С	С	А	Е	А	А	В	D	В

SOLUTIONS

Question 1

Answer is C

 $f(x) = 2x + 1 + \frac{1}{(x-a)^2}$ is the sum of a straight line and a truncus.

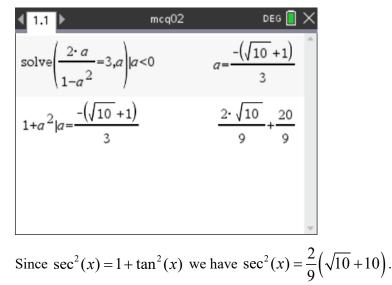
Using CAS we can find the coordinates of the turning point:

∢ 1.1 ▶	mcq01	DEG 📘 🗙
$f(x):=2 \cdot x+1+-$ (;	$\frac{1}{(x-a)^2}$	Done
\triangle solve $\left(\frac{d}{dx}\right) \left(f(x)\right)$	1	x=a+1
f(x) x=a+1		2• <i>a</i> +4
		~

The graph of f has a local minimum at (a+1, 2a+4) and has two asymptotes (the straight line y = 2x+1 and the vertical line x = a).

Question 2 Since $\frac{\pi}{2} < x < \frac{3\pi}{4}$, $\tan(x) < 0$. Note that $\cot(2x) = \frac{1}{3}$ $\tan(2x) = 3$ $\frac{2\tan(x)}{1 - \tan^2(x)} = 3$ $\tan(x) = \frac{-1 - \sqrt{10}}{3}$

This may be found using CAS:



Question 3 Answer is B

The period is π and so a = 2. From the graph we see that $\sec\left(2\left(\frac{\pi}{4}-b\right)\right) = -1$ and so

$$\cos\left(2\left(\frac{\pi}{4}-b\right)\right)=-1.$$

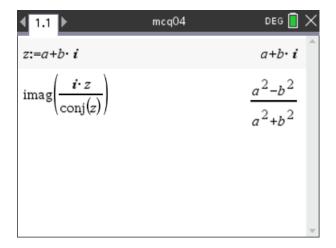
Therefore, it could be the case that $\frac{\pi}{2} - 2b = -\pi$ or $\frac{\pi}{2} - 2b = \pi$ giving $b = \frac{3\pi}{4}$ or $b = -\frac{\pi}{4}$. The second of these options appears as a multiple-choice answer.

Question 4 Answer is A

Let z = a + bi. Then

$$\operatorname{Im}\left(\frac{iz}{\overline{z}}\right) = \operatorname{Im}\left(\frac{i(a+bi)}{a-bi}\right)$$
$$= \operatorname{Im}\left(\frac{i(a+bi)(a+bi)}{a^2+b^2}\right)$$
$$= \operatorname{Im}\left(\frac{i(a^2-b^2+2abi)}{a^2+b^2}\right)$$
$$= \frac{a^2-b^2}{a^2+b^2}$$

Alternatively, CAS can be used to find this result:



Question 5 Answer is E

The gradient of the ray is 1 and the ray originates at the point (-1, 2) (not inclusive of this point). Therefore the equation of the line is y = x + 3 and the function that describes the ray is $f: (-1, \infty) \rightarrow R$, f(x) = x + 3.

Question 6
Answer is C
Note that
$$\sqrt{3} + i = 2 \operatorname{cis}\left(\frac{\pi}{6}\right)$$
 and so
 $\left(\sqrt{3} + i\right)^{3n+3} = \left(\left(\sqrt{3} + i\right)^{n+1}\right)^3$
 $= \left(-a \cdot 2 \operatorname{cis}\left(\frac{\pi}{6}\right)\right)^3$
 $= -a^3 \cdot 8 \operatorname{cis}\left(\frac{\pi}{2}\right)$
 $= -8a^3i$

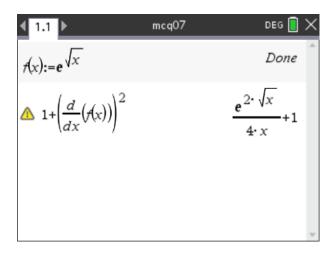
©The Mathematical Association of Victoria, 2021

Question 7 Answer is E

The length of the curve $f(x) = e^{\sqrt{x}}$ between x = 1 and x = 4 is

$$\int_{1}^{4} \sqrt{1 + \left(\frac{d}{dx}\left(e^{\sqrt{x}}\right)\right)^{2}} \, dx = \int_{1}^{4} \sqrt{1 + \frac{e^{2\sqrt{x}}}{4x}} \, dx$$

Use CAS to perform the differentiation:



Note that

$$\int_{0}^{\frac{\pi}{4}} \cos^{3}(2x) dx = \int_{0}^{\frac{\pi}{4}} (1 - \sin^{2}(2x)) \cos(2x) dx.$$

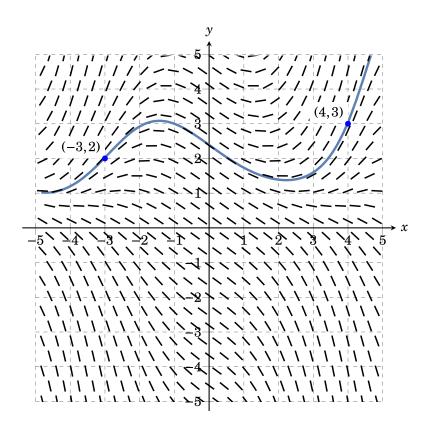
Let $u = \sin(2x)$ and so $\frac{du}{dx} = 2\cos(2x) \Rightarrow \frac{1}{2}du = \cos(2x)dx$.

Now consider the terminals: When x = 0, u = 0 and when $x = \frac{\pi}{4}$, u = 1. Therefore the integral can be written in terms of u as

 $\frac{1}{2}\int_0^1(1-u^2)du.$

Question 9 Answer is A

Draw an approximate solution curve that passes through the point (-3, 2). The curve also passes through the point (4,3).



Question 10 Answer is D

The volume of salt solution in the tank at time $t \ge 0$ is 100 + 5t and so a differential equation for the amount of salt x in the tank at time t is

$$\frac{dx}{dt} = \text{rate in} - \text{rate out}$$
$$= 0.05 \times 10 - \frac{5x}{100 + 5t}$$
$$= \frac{1}{2} - \frac{x}{20 + t}$$

Question 11 Answer is C

Using the scalar product we have

$$\cos \theta = \frac{\underline{a} \cdot \underline{b}}{|\underline{a}||\underline{b}|}$$
$$= \frac{4 - 2 + 2}{\sqrt{9}\sqrt{9}}$$
$$= \frac{4}{9}$$

Using a trigonometric identity we have

$$\tan^{2}(\theta) = \sec^{2}(\theta) - 1$$
$$= \left(\frac{9}{4}\right)^{2} - 1$$
$$= \frac{65}{16}$$
and so $\tan(\theta) = \frac{\sqrt{65}}{4}$.

Question 12 Answer is C

Suppose that the vectors \underline{a} , \underline{b} and \underline{c} are dependent. Therefore $\alpha \underline{a} + \beta \underline{b} = \underline{c}$.

Consider the *i* components: $2\alpha + 3\beta = 2$. Consider the *j* components: $2\alpha + 6\beta = -3$.

Solving gives $\alpha = \frac{7}{2}$ and $\beta = -\frac{5}{3}$.

Substituting this into the \underline{j} components gives $\frac{7}{2}m - 2\left(-\frac{5}{3}\right) = 2 \Rightarrow m = -\frac{8}{21}$. So the vectors \underline{a} , \underline{b} and \underline{c} are linearly independent if $m \in R \setminus \left\{-\frac{8}{21}\right\}$.

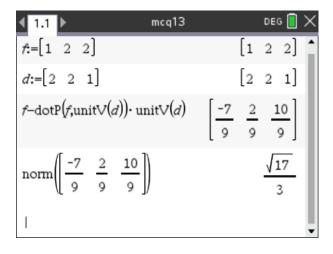
Alternatively, vectors \underline{a} , \underline{b} and \underline{c} are independent if the determinant of the 3×3 matrix whose rows (or columns) consist of the vectors \underline{a} , \underline{b} and \underline{c} , is not zero. This determinant can be evaluated and solved quickly using CAS:

∢ 1.1 ▶	mcq12	DEG 🚺 🗙
\wedge solve det $\begin{pmatrix} 2\\ 3\\ 2 \end{pmatrix}$	$\begin{pmatrix} m & 2 \\ -2 & 6 \\ 2 & -3 \end{pmatrix} = 0, m$	$m = \frac{-8}{21}$
1		
		~

Question 13 Answer is C

The component of \tilde{F} perpendicular to d is $\tilde{F} - (\tilde{F} \cdot \hat{d})\hat{d} = -\frac{7}{9}\hat{i} + \frac{2}{9}\hat{j} + \frac{10}{9}\hat{k}$. The magnitude of this vector is $\frac{\sqrt{17}}{3}$.

This can be found using CAS:



Question 14 Answer is A

Using a table to perform the step required for Euler's method is often convenient:

n	x_n	\mathcal{Y}_n	\mathcal{Y}_n '
0	1	1	1
1	$\frac{11}{10}$	$1 + \frac{1}{10} = \frac{11}{10}$	$\frac{22}{21}$
2	$\frac{12}{10}$	$\frac{11}{10} + \frac{22}{210} = \frac{253}{210}$	$\frac{23}{21}$
3	$\frac{13}{10}$	$\frac{253}{210} + \frac{1}{10} \times \frac{23}{21} = \frac{46}{35}$	

This can also be done on CAS, although a numerical result is obtained which must be compared with the fractional options given.

■ 1.1

$$mcq14$$
 DEG $×$
 $euler(\frac{2 \cdot y}{x+1}, x, y, \{1, 1.3\}, 1, 0.1)$
[1. 1.1 1.2 1.3
1. 1.1 1.20476190476 1.31428571429]

Question 15 Answer is E

Note that

$$\frac{dy}{dx} = \frac{\sin(x+y) - \sin(x-y)}{2xy}$$
$$= \frac{2\cos(x)\sin(y)}{2xy}$$
$$= \frac{\cos(x)\sin(y)}{xy}$$

Therefore
$$\int \frac{y}{\sin(y)} dy = \int \frac{\cos(x)}{x} dx$$
.

Question 16 Answer is A

Consider the system as a single mass of m + 2 kg acted upon by a force of 2g Newtons:

$$(2+m)$$
 kg $\longrightarrow 2g$

This gives 2g = 6(m+2) = 6m+12 and so

$$m = \frac{1}{6}(2g-12) = \frac{g}{3} - 2$$
 kg.

Question 17 Answer is A

Consider the i components:

$$1+t^2 = 6t-4 \Longrightarrow t = 1,5$$

Now consider the j components:

$$3t+2=t^2-8 \Longrightarrow t=5$$

Therefore, the particles collide when t = 5. The position of the point of collision is

$$r_{A}(5) = 26i + 17j$$

Question 18 Answer is B

Since
$$a = \frac{dv}{dt}$$
 we have

$$\frac{dv}{dt} = \frac{v}{\sqrt{v+1}} \Longrightarrow \int \frac{\sqrt{v+1}}{v} dv = \int dt$$

and so the time taken for the particle to increase in velocity from 1 ms^{-1} to 5 ms^{-1} is

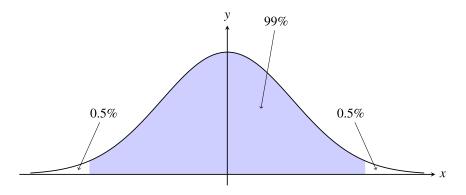
$$\int_{1}^{5} \frac{\sqrt{v+1}}{v} dv = 2.966$$
 seconds.

▲ 1.1 ▶	mcq18	DEG 🚺 🗙
$\int_{1}^{5} \frac{\sqrt{\nu+1}}{\nu} \mathrm{d}\nu$	2.	96628480837
		*

Question 19 Answer is D

Note that
$$\overline{x} = \frac{382.81 + 387.19}{2} = 385$$
.

Consider the standard normal distribution:



Use CAS to find z if Pr(Z > z) = 0.995. Then z = 2.576.

So

$$\overline{x} + z. \frac{s}{\sqrt{n}} = 387.19$$

 $385 + 2.576. \frac{12}{\sqrt{n}} = 387.19$
 $n \approx 200$

▲ 1.1 ▶ r	ncq19 🗢	DEG 🚺	×
<u>382.81+387.19</u> 2		385.	
invNorm(0.995,0,1))	2.57583	
solve $\left(385 + \frac{2.576 \cdot 1}{\sqrt{n}}\right)$	<u>-2</u> =387.19, <i>n</i>)		
		n=199.235	
1			

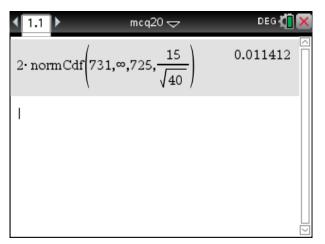
Question 20 Answer is B

We have

$$E\left(\overline{X}\right) = 731$$
$$sd\left(\overline{X}\right) = \frac{15}{\sqrt{40}}$$

Therefore:

$$p - \text{value} = 2 \times \Pr\left(\overline{X} > 731 \mid \mu = 725\right)$$
$$= 0.0114$$



Note that this can also be found using the zTest command:

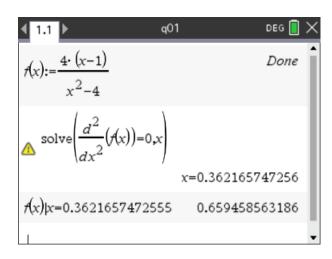
↓ 1.1	l▶ r z Test	nca20 🗢	◀ 1.1 ▶	mcq20 🗢	DEG
2• nc	: μΟ: σ:		zTest 725,15,7	31,40,0: <i>stat.results</i> "Title" "Alternate Hyp" "z" "PVal" "x" "n" "σ"	''z Test''

SECTION B

Question 1

a.

Use CAS to find the coordinates of the point of inflection: (0.362, 0.659) [A2]



b.

Note that $f(x) = \frac{4(x-1)}{x^2 - 4} = \frac{3}{x+2} + \frac{1}{x-2}$ and so the asymptotes are x = 2, x = -2 and y = 0.

[A2]

1 mark for vertical asymptotes and 1 for horizontal asymptote

The graph of y = f(x) is plotted below:

c.

y 1 5 4 3 2 (0,1)1 (0.362, 0.659)y = 0➤ x -2 2 4 -5 -4-3 $^{-1}$ 0 3 5 (1,0) $\frac{1}{1}$ -1-2-3 $^{-4}$ -2 x = 2x =-5

The asymptotes, the axis intercepts and the point of inflection are labelled. [A3] 1 mark for correct sketch, 1 mark for asymptotes correct and labelled, 1 mark for coordinates

d i.

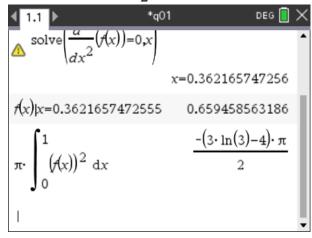
The volume of the solid is

$$V = \pi \int_0^1 \left(\frac{4(x-1)}{x^2 - 4}\right)^2 dx = \pi \int_0^1 \frac{16(x-1)^2}{\left(x^2 - 4\right)^2} dx.$$
 [A2]

1 mark correct terminals and dx, 1 mark integrand and π

ii.

Use CAS to find $V = \frac{\pi}{2} (4 - 3 \log_e(3))$.



15

Question 2

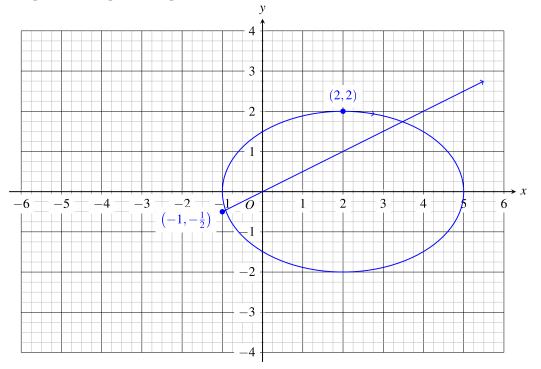
a.

The cartesian equation of particle A is
$$y = \frac{x}{2}, x \ge -1$$
. [A1]

The cartesian equation of particle B is
$$\left(\frac{x-2}{2}\right)^2 + \left(\frac{y}{2}\right)^2 = 1$$
 or $\frac{(x-2)^2}{9} + \frac{y^2}{4} = 1$. [A1]

b.

The path of each particle is plotted below:



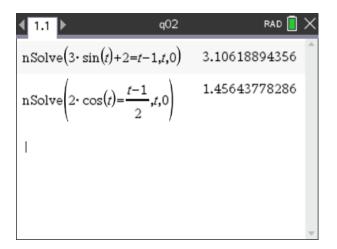
[A3]

1 mark each particle sketched, 1 mark for directions of both

Note that particle A begins at the point $\left(-1, -\frac{1}{2}\right)$ and particle B begins at the point (2, 2) and moves in a clockwise direction.

c.

The particles are in the same x -position when $t \approx 3.106$ and are in the same y -position when $t \approx 1.456$. [A1] Therefore they do not collide. [A1] With evidence



d. i.

The distance between the particles at any time t is

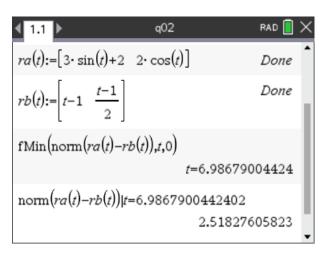
$$\left|\mathbf{r}_{A}(t) - \mathbf{r}_{B}(t)\right| = \sqrt{\left(3\sin(t) + 2 - t + 1\right)^{2} + \left(2\cos(t) - \frac{t - 1}{2}\right)^{2}}$$

Note that this can quickly entered into the calculator using the Norm command:

Using CAS we find that the articles are closest to each other when t = 6.987 seconds (correct to three decimal places).

ii.

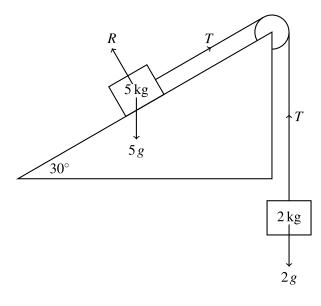
Again, using the Norm command, we find that the closest the particles are to each other is 2.52 metres (correct to two decimal places).
[A1]



Question 3

a.

The forces are labelled on the diagram:



[A1]

b.

Consider a single 7 kg mass acted upon by forces 2g and $5g\sin(30^\circ) = \frac{5}{2}g$:

$$5g\sin(30^\circ) \longleftarrow 7\text{ kg} \longrightarrow 2g$$

Then $\frac{5}{2}g - 2g = 7a \Rightarrow a = \frac{1}{14}g = \frac{7}{10} \text{ ms}^{-2}$ [A2]

c.

Consider the hanging mass:

d.

Use the constant acceleration formula $v^2 = u^2 + 2as$:

$$v^{2} = 2 \times \frac{7}{10} \times 5 = 7$$

Therefore $v = \sqrt{7}$. [A1]

e. i.

After the string breaks, the equation of motion for the mass is

$$F = \frac{5g}{2} - 0.2v^2 = 5a$$
 [A1]

Therefore $a = \frac{g}{2} - \frac{1}{25}v^2$ and so $v\frac{dv}{dx} = \frac{g}{2} - \frac{1}{25}v^2$.

The mass must travel a further 5 metres to reach the bottom of the inclined plane. An equation which gives the velocity v_1 at the bottom of the plane is

$$\int_{\sqrt{7}}^{v_1} \frac{v}{\frac{g}{2} - \frac{1}{25}v^2} dv = 5 \text{ or } \int_{\sqrt{7}}^{v_1} \frac{50v}{25g - 2v^2} dv = 5$$
[A2]

Correct integrand, correct terminals with equation

Note that a different symbol (in this case we have used v_1) should be used.

ii.

Solving using CAS gives $v_1 = 6.71 \text{ ms}^{-1}$ correct to two decimal places as the speed at which the particle reaches the bottom of the plane. [A1]

■ 1.1
q03 RAD ×
solve(25.9.8-2.
$$v^2=0,v$$
)| $v>0$
 $v=11.0679718106$
solve $\left(\int_{\sqrt{7}}^{\sqrt{7}} \frac{50 \cdot v}{25 \cdot 9.8 - 2 \cdot v^2} dv=5, vI\right) |\sqrt{7} < vI < vI$
 $vI=6.71401777499$

Note that $v < 5\sqrt{\frac{g}{2}} \approx 11.07$ in order for the integral to be defined. This allows bounds to be placed on the solution.

Question 4

a.
Concentration =
$$\frac{x}{V} = \frac{x}{10 + 20t - 10t} = \frac{x}{10 + 10t}$$
.

Answer:
$$\frac{x}{10+10t}$$
. [A1]

b.
$$\frac{dx}{dt} = (\text{inflow of DHA}) - (\text{outflow of DHA})$$

=(rate of inflow of DHA)×(concentration of DHA in inflow)

-(rate of outflow of DHA)×(concentration of DHA in outflow).

*

Substitute concentration of DHA in outflow $=\frac{x}{10+10t}$ from **part a.**:

$$\frac{dx}{dt} = (20)e^{-0.2t} - (10)\frac{x}{10 + 10t}$$

$$= 20e^{-0.2t} - \frac{x}{1+t}.$$

$$\Rightarrow \frac{dx}{dt} + \frac{x}{1+t} = 20e^{-0.2t}.$$

All lines labelled *

c.

Use a CAS to solve the differential equation $\frac{dx}{dt} + \frac{x}{1+t} = 20e^{-0.2t}$ subject to the initial condition x(0) = 0:

$$x = \frac{100e^{-t/5} \left(6e^{t/5} - t - 6\right)}{t+1} \quad \text{or} \quad x = \frac{600 - 100(t+6)e^{-t/5}}{t+1}.$$
 [A1]

Use a CAS to solve x(t) = 30:

t = 3.96 or t = 16.02 (correct to two decimal places)

The value of t for which x is **decreasing** is required.

Option 1: Inspect a graph of x = x(t) (draw the graph using a CAS).

Option 2: Choose the value of t such that $\frac{dx}{dt} < 0$ when x = 30.

Substitute x = 30 into $\frac{dx}{dt} = 20e^{-0.2t} - \frac{x}{1+t}$:

$$\frac{dx}{dt} = 20e^{-0.2t} - \frac{30}{1+t}.$$

Use a CAS to test the value of $\frac{dx}{dt}$ for t = 3.96 and t = 16.02:

$$t = 3.96: \frac{dx}{dt} > 0.$$
 $t = 16.02: \frac{dx}{dt} < 0.$

Answer: t = 16.02.

d. • Step size: 20 seconds = $\frac{1}{3}$ minute.

Note: The unit of time in the differential equation is minutes therefore the step size must be converted from seconds to minutes.

• From the initial condition x(0) = 0: $x_0 = 0$ and $t_0 = 0$.

•
$$\frac{dx}{dt} = 20e^{-0.2t} - \frac{x}{1+t}$$
.

• The number of steps in 3 minutes is 9 therefore the value of x_9 is required.

Use a CAS to run Euler's Method with the above input data.

Answer: 27.81.

e.

Use a CAS to substitute t = 4 into the solution to the differential equation found in **part c.**:

x = 30.134207. [A1]

Note: More accuracy than the final answer requires must be used so as to avoid rounding error.

Substitute t = 4 and x = 30.134207 into $\frac{dx}{dt} = 20e^{-0.2t} - \frac{x}{1+t}$:

 $\frac{dx}{dt} = 2.960$ grams per minute (correct to three decimal places).

Answer: 2.960 grams per minute.

©The Mathematical Association of Victoria, 2021

[A1]

f. By inspection of $\frac{dx}{dt} = 20e^{-0.2t} - \frac{x}{1+t}$:

Rate of outflow of DHA =
$$\frac{x}{1+t}$$
 [M1]

where $x = \frac{600 - 100(t+6)e^{-t/5}}{t+1}$ is the solution to the differential equation found in **part c.**

Therefore the **amount** of DHA that has flowed out of the tank over the first 8 minutes is given by

$$\int_{0}^{8} \frac{x}{1+t} dt$$
(M1)
where $x = \frac{600 - 100(t+6)e^{-t/5}}{t+1}$

= 44.5498 grams (correct to four decimal places).

Answer: 44.5.

Question 5

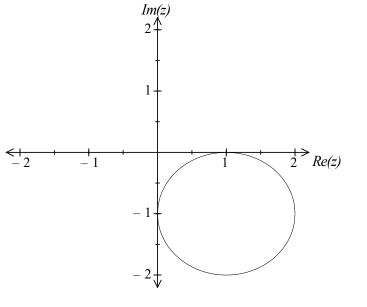
a.

The given relation is a circle. It can be written in standard form as |z - (1-i)| = 1.

By inspection of the standard form:

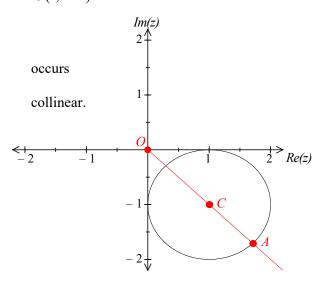
Centre at z = 1 - i.

Radius r = 1.



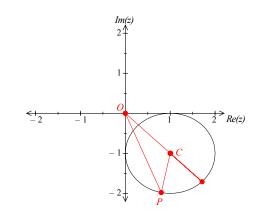
b. i.

By symmetry, the value of z with the largest modulus is represented by the point of intersection A of the circle and the line passing through the origin O and centre C(1, -1) of the circle.



Note: Let *P* be a point on the circle. From triangle *OPC*: $OP \le OC + CP$ therefore the maximum value of *OP*

at *P* when the points *O*, *C* and *P* are



Algebraic Method:

Circle: $(x-1)^2 + (y+1)^2 = 1$ (1) Line: y = -x. ... (2)

[M1]

Both equations.

Use a CAS to solve equations (1) and (2) simultaneously:

$$x = 1 \pm \frac{1}{\sqrt{2}} = \frac{\sqrt{2} \pm 1}{\sqrt{2}} = \frac{2 \pm \sqrt{2}}{2}.$$

Reject $x = \frac{2-\sqrt{2}}{2}$ (corresponds to minimum modulus).

Geometric Method:

$$|z| = OC + CA = \sqrt{2} + 1.$$
 Arg $(z) = -\frac{\pi}{4}.$

Therefore the polar form of z is
$$z = (\sqrt{2} + 1) \operatorname{cis} \left(-\frac{\pi}{4} \right)$$
. [A1]

Answer:
$$z = \left(\frac{2+\sqrt{2}}{2}\right) - i\left(\frac{2+\sqrt{2}}{2}\right).$$
 [A1]

b. ii.

By inspection of the graph in **part a.** the largest principal argument is 0 (when z = 1).

Answer: z = 1.

c. i.

It is required that the distance of the point representing z = x + iy from the origin to the circle is $\sqrt{3}$: $\sqrt{x^2 + y^2} = \sqrt{3}$.

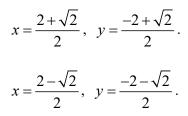
Circle:
$$(x-1)^2 + (y+1)^2 = 1$$
. ... (1)
 $\sqrt{x^2 + y^2} = \sqrt{3}$ (3)

[M1]

[A1]

Both equations.

Use a CAS to solve equations (1) and (3) simultaneously:



Answer:
$$z = \frac{2+\sqrt{2}}{2} + i\frac{(-2+\sqrt{2})}{2}, \quad z = \frac{2-\sqrt{2}}{2} + i\frac{(-2-\sqrt{2})}{2}.$$
 [A1]

c. ii.

The value of z represented by the point of intersection of the circle and the line passing through the origin with gradient $m = \tan(\theta)$ where $\theta = \tan^{-1}(-2)$ is required.

Circle:
$$(x-1)^2 + (y+1)^2 = 1$$
. ... (1)
Line: $y = -2x$ (4)

[M1]

Both equations.

Use a CAS to solve equations (1) and (4) simultaneously:

x = 1, y = -2. $x = \frac{1}{5}, y = -\frac{2}{5}.$

Answer: z = 1 - 2i, $z = \frac{1}{5} - i\frac{2}{5}$. [A1]

d.

Compare |z-1+i|=1 with $\sqrt{2}|z-(1+\sqrt{2})+ai|=|2z-b+2i|$:

•
$$|z-1+i|=1$$

 $\Rightarrow |z-1+i|^2=1$
 $\Rightarrow (z-1+i)(\overline{z-1+i})=1$
 $\Rightarrow (z-1+i)(\overline{z}-1-i)=1.$

Expand using a CAS: $z\overline{z} + (-1-i)z + (-1+i)\overline{z} + 1 = 0$(1)

•
$$\sqrt{2} |z - (1 + \sqrt{2}) + ai| = |2z - b + 2i|$$

 $\Rightarrow 2 |z - (1 + \sqrt{2}) + ai|^2 = |2z - b + 2i|^2$
 $\Rightarrow 2 (z - (1 + \sqrt{2}) + ai) (\overline{z - (1 + \sqrt{2}) + ai}) = (2z - b + 2i) (\overline{2z - b + 2i})$
 $\Rightarrow 2 (z - (1 + \sqrt{2}) + ai) (\overline{z} - (1 + \sqrt{2}) - ai) = (2z - b + 2i) (2\overline{z} - b - 2i) \text{ since } a, b \in \mathbb{R}.$

Expand both sides using a CAS:

$$2z\overline{z} + 2\left(-(1+\sqrt{2}) - ai\right)z + 2\left(-(1+\sqrt{2}) + ai\right)\overline{z} + 6 + 4\sqrt{2} + 2a^{2}$$
$$= 4z\overline{z} + (-2b - 4i)z + (-2b + 4i)\overline{z} + b^{2} + 4$$

$$\Rightarrow 2z\overline{z} + \left(-2b - 4i + 2(1 + \sqrt{2}) + 2ai\right)z + \left(-2b + 4i + 2(1 + \sqrt{2}) - 2ai\right)\overline{z} + b^2 - 2 - 4\sqrt{2} - 2a^2 = 0. \quad \dots (2)$$

Compare equations (1) and (2).

Consider the coefficients of either z or \overline{z} :

$$2(-1-i) = -2b - 4i + 2(1 + \sqrt{2}) + 2ai$$

$$\Rightarrow -1 - i = -b + (1 + \sqrt{2}) + (a - 2)i.$$
 (3) [A1]

Equate real and imaginary parts of equation (3).

Real parts: $-1 = -b + (1 + \sqrt{2}) \implies b = 2 + \sqrt{2}$.

Imaginary parts:
$$-1 = a - 2 \implies a = 1$$
.

Answer:
$$a = 1, \quad b = 2 + \sqrt{2}$$
. [A1]

Note: These answers can be checked by comparing the constant terms of equations (1) and (2).

$$2 = b^{2} - 2 - 4\sqrt{2} - 2a^{2}$$

$$\Rightarrow 2 = \left(2 + \sqrt{2}\right)^{2} - 2 - 4\sqrt{2} - 2 = 0 \checkmark.$$

Question 6

a.

- Let X be the random variable "Mass (grams) of a Wakandan apple".
- $X \sim \text{Normal}(\mu_X = 125, \sigma_X = 20).$
- Let the number of apples in a paper bag be *n*.
- Let W be the random variable "Sum of mass (grams) of n apples".

$$W = X_1 + X_2 + \dots + X_n$$

where X_1, X_2, \ldots, X_n are independent copies of X.

Note: Using the random variable nX is incorrect: $X_1 + X_2 + \dots + X_n \neq nX$.

• The largest value of *n* such that Pr(W < 2000) > 0.9 is required.

Note: Must convert 2 kg into 2000 grams since the unit of X is grams.

- W follows a normal distribution since X_1, X_2, \dots, X_n are independent normal random variables.
- $E(W) = \mu_W = \mu_{X_1} + \mu_{X_2} + \dots + \mu_{X_n} = n\mu_X = 125n$.
- $\operatorname{Var}(W) = \operatorname{Var}(X_1) + \operatorname{Var}(X_2) + \cdots \operatorname{Var}(X_n) = n \operatorname{Var}(X) = n(20)^2$
- \Rightarrow sd(W) = $\sigma_W = 20\sqrt{n}$.
- Therefore $W \sim \text{Normal}\left(\mu_W = 125n, \sigma_W = 20\sqrt{n}\right)$. [M1]
- The largest value of *n* such that Pr(W < 2000) > 0.9 is required.

Answer: 15.

©The Mathematical Association of Victoria, 2021

Method 1:

• Define the function

$$f(x) = \operatorname{normCdf}\left(-\infty, \ 2000, \ 125x, \ 20\sqrt{x}\right).$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$\operatorname{Lower \ Upper \ } \mu_W \qquad \sigma_W$$
value value

The smallest value of $x \in Z^+$ such that f(x) > 0.9 is required.

• Solve using a CAS from either a table of values, solving f(x) = 0.9 or trial-and-error: x = 15.

Method 2:

• Find the value of z such that Pr(Z < z) = 0.9.

Use the inverse normal command on a CAS: z = 1.282.

Note: Sufficient accuracy is required to ensure that the final answer is correct to the nearest integer.

•
$$Z = \frac{W - \mu_W}{\sigma_W} \implies 1.282 = \frac{2000 - 125n}{20\sqrt{n}}.$$

Solve using a CAS: n = 15.2.

31

b. i.

Answer:
$$H_0: \ \mu_X = 125$$
.
 $H_1: \ \mu_X \neq 125$.

[A1]

[A1]

Both statements are required.

b. ii.

The probability of rejecting H_0 when it is true is the level of significance of the statistical test.

2% level of significance $\Leftrightarrow \alpha = 0.02$.

Answer: 0.02.

b. iii.

 (C_1^*, C_2^*) is the interval such that H_0 is accepted at the 2% level of significance when the sample mean $\overline{x} \in (C_1^*, C_2^*)$.

Note: (C_1^*, C_2^*) is **not** a 98% confidence interval. A 98% confidence interval is the interval such that H_0 is accepted at the 2% level of significance when it contains μ_X (the population mean under H_0).

• H_0 is accepted at the 2% level of significance if $\overline{x} \in (C_1^*, C_2^*)$

therefore H_0 is rejected at the 2% level of significance if $\overline{x} < C_1^*$ or $\overline{x} > C_2^*$.

- Sample of size 30 therefore $\overline{X} \sim \text{Normal}\left(\mu_{\overline{X}} = \mu_X = 125, \sigma_{\overline{X}} = \frac{20}{\sqrt{30}}\right).$ [A1]
- 2% level of significance $\Leftrightarrow \alpha = 0.02$.

•
$$\Pr\left(\overline{X} < C_1^*\right) = \frac{0.02}{2} = 0.01$$
. $\Pr\left(\overline{X} > C_2^*\right) = \frac{0.02}{2} = 0.01$. [M1]

Use the inverse normal command on a CAS:

Answer:
$$C_1^* = 116.51$$
. $C_2^* = 133.50$. [A1]

Both values are required.

b. iv.

Use a CAS.

b. v.

Answer: H_0 should not be rejected at the 2% level of significance.

Accept either of the following justifications:

- $\overline{x} \in (C_1^*, C_2^*)$ where \overline{x} is the observed sample mean: $123.51 \in (116.51, 133.49)$.
- 2% level of significance \Leftrightarrow 98% confidence interval.
- $\mu_X = 125$ lies inside the 98% confidence interval (115.21, 132.20).

[H1]

Consequential on answers to part iii. or part iv.

Note: Calculating the *p*-value ($p = 0.72 > \alpha$ therefore H_0 is not rejected) is a valid but ridiculous justification given the intervals calculated in **part iii.** and **part iv.**

b. vi.

•
$$\overline{X} \sim \text{Normal}\left(\mu_{\overline{X}} = \mu_X, \ \sigma_{\overline{X}} = \frac{20}{\sqrt{30}}\right).$$

- H_0 is accepted if $\overline{x} \in (C_1^*, C_2^*)$ where $C_1^* = 116.51$ and $C_2^* = 133.49$ (from part iii.)
- Therefore the required probability is given by

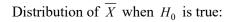
$$\Pr\left(C_{1}^{*} < \overline{X} < C_{2}^{*} \mid H_{1} \text{ true}\right) = \Pr\left(C_{1}^{*} < \overline{X} < C_{2}^{*} \mid \mu_{X} = 114\right)$$

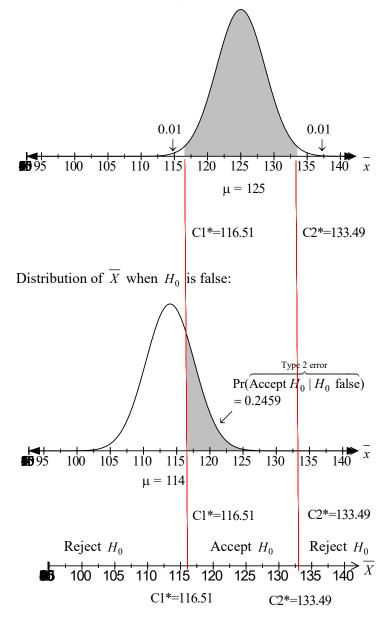
=
$$\Pr\left(116.51 < \overline{X} < 133.49 \mid \mu_{X} = 114\right).$$
 [H1]
Consequential on answers to **part iii**.

• Use the normal distribution command on a CAS:

$$Pr(116.51 < \overline{X} < 133.49) = 0.2459.$$
Answer: 0.2459.
[A1]

Remark: To accept H_0 when H_1 is true is to commit a type 2 error.





END OF SOLUTIONS