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SECTION A – Multiple-choice questions 
 
ANSWERS 
 

1 2 3 4 5 6 7 8 9 10 
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C C C A E A A B D B 
 
 
SOLUTIONS 
 
Question 1  Answer is C 

2( ) 2 1 1
( )

f
a

x x
x

+ +
−

=  is the sum of a straight line and a truncus.  

Using CAS we can find the coordinates of the turning point: 

 
The graph of f  has a local minimum at ( 1, 2 4)a a+ +  and has two asymptotes (the straight line 

2 1y x= +  and the vertical line x a= ).  
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Question 2  Answer is D 

Since 
3

2 4
xπ π

< < , tan( ) 0x < . Note that 

2

1cot(2 )
3

tan(2 ) 3
2 tan( ) 3

1 tan ( )

1 10tan( )
3

x

x
x

x

x

=

=

=
−

− −
=

 

This may be found using CAS: 

 

Since 2 2sec ( ) 1 tan ( )x x= +  we have ( )2 2sec ( ) 10 10
9

x = + . 

 

Question 3  Answer is B 

The period is π  and so 2a = . From the graph we see that sec 2 1
4

bπ  − = −    
 and so 

cos 2 1
4

bπ  − = −    
. 

 

Therefore, it could be the case that 2
2

bπ π− = −  or 2
2

bπ π− =  giving 
3
4

b π
=  or 

4
b π
= − . 

The second of these options appears as a multiple-choice answer.  
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Question 4  Answer is A 

Let z a bi= + . Then 
 

( )
2 2

2 2

2 2

2 2

2 2

( )m Im

( )( )Im

I

2
Im

iz i a bi
z a bi

i a bi a bi
a b

i a b abi
a b

a b
a b

+   =   −   
+ + =  + 

 − +
 =
 + 
−

=
+

 

 
Alternatively, CAS can be used to find this result: 
 

 
 
 
Question 5  Answer is E 

The gradient of the ray is 1 and the ray originates at the point ( 1, 2)−  (not inclusive of this point). 
Therefore the equation of the line is 3y x= +  and the function that describes the ray is 

: ( , )1 Rf ∞− → , ( ) 3f x x= + . 
 
 
Question 6  Answer is C 

Note that 3 2cis
6

i π + =  
 

 and so 

( ) ( )( )33 3 1

3

3

3

3 3

2
6

8ci

s

s
2

8

ci

n n
i i

a

a i

a

π

π

+ +
+ +

  − ⋅     
 ⋅ − 
 

=

=

=

=

−
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Question 7  Answer is E 

The length of the curve ( ) xf x e=  between 1x =  and 4x =  is 
 

( )
2 24 4

1 1
1 1

4

x
xd ee dx dx

dx x
 + = + 
 ∫ ∫  

 
Use CAS to perform the differentiation: 
 

 
 
 
 
Question 8  Answer is B 

Note that 
 

( )3 24 4
0 0

cos (2 ) 1 sin (2 ) cos(2 )x dx x x dx
π π

= −∫ ∫ . 

 

Let sin(2 )u x=  and so 
12cos(2 ) cos(2 )
2

du x du x dx
dx

= ⇒ = . 

 

Now consider the terminals: When 0x = , 0u =  and when 
4

x π
= , 1u = . 

Therefore the integral can be written in terms of u  as 
 

( )1 2

0

1 1
2

u du−∫ . 
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Question 9  Answer is A 

Draw an approximate solution curve that passes through the point ( 3, 2)− . 
The curve also passes through the point (4,3) . 
 
 

 
 
 
 
Question 10  Answer is D 

The volume of salt solution in the tank at time 0t ≥  is 100 5t+  and so a differential equation for 
the amount of salt x  in the tank at time t  is 
 

rate in  rate out

50.05 10
100 5

1
2 20

dx
dt

x
t

x
t

= −

= × −
+

= −
+
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Question 11  Answer is C 

Using the scalar product we have  
 

a bcos
a b
4 2 2

9 9
4
9

θ ⋅
=

− +
=

=

 

 

 

 
Using a trigonometric identity we have 
 

2 2

2

tan ) sec ) 1

9 1
4

65
16

( (θ θ= −

 = − 
 

=

 

and so 
65tan( )
4

θ = . 

 
  



2021 MAV Specialist Mathematics Trial Exam 2, Solutions 7 
 

©The Mathematical Association of Victoria, 2021 
 

Question 12  Answer is C 

 
Suppose that the vectors a



, b


 and c


 are dependent. Therefore a b cα β+ =
  

. 
 
Consider the i



 components: 2 3 2α β+ = . 
Consider the j



 components: 2 6 3α β+ = − . 
 

Solving gives 
7
2

α =  and 
5
3

β = − . 

Substituting this into the j


 components gives 7 5 82 2
2 3 21

m m − − = ⇒ = − 
 

. 

So the vectors a


, b


 and c


 are linearly independent if 8
21

m R  ∈ − 
 

 . 

Alternatively, vectors a


, b


 and c


 are independent if the determinant of the 3 3×  matrix whose 
rows (or columns) consist of the vectors a



, b


 and c


, is not zero. This determinant can be 
evaluated and solved quickly using CAS: 
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Question 13  Answer is C 

The component of F


 perpendicular to d


 is ( ) 7 2 10ˆ ˆF d d= i j k
9 9 9

F ⋅ + +− −
    



. 

The magnitude of this vector is 
17
3

. 

This can be found using CAS: 
 

 
 
Question 14  Answer is A 
 
Using a table to perform the step required for Euler’s method is often convenient: 
 

n  
nx  ny  'ny  

0 1 1 1 
1 11

10
 

0
1 1 11

10 1
+ =  

22
21

 

2 12
10

 
11 22 253
10 210 210

+ =  
23
21

 

3 13
10

 
253 1 23 46
210 10 21 35

+ × =  
 

 
This can also be done on CAS, although a numerical result is obtained which must be compared 
with the fractional options given. 
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Question 15  Answer is E 

Note that  
 

sin( ) sin( )
2

2cos( )sin( )
2

cos( )sin( )

dy x y x y
dx xy

x y
xy

x y
xy

+ − −
=

=

=

 

 

Therefore 
cos( )

sin( )
y xdy dx

y x
=∫ ∫ . 

 
 
 
Question 16  Answer is A 

Consider the system as a single mass of 2m + kg acted upon by a force of 2g  Newtons: 
 

 
 
This gives 2 6( 2) 6 12g m m= + = +  and so  

1 (2 12) 2
6 3

m gg −= = −  kg. 

 
 
 
Question 17  Answer is A 

Consider the i


 components: 
 

2 51 6 4 1,t tt = − =+ ⇒  
 
Now consider the j



 components: 
 

2 8 53 2 t tt + −= ⇒ = . 
 
Therefore, the particles collide when 5t = . The position of the point of collision is  
 
r (5) 26i 17 jA = +
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Question 18  Answer is B 

Since a dv
dt

=  we have 

 
1

1
dv v v dv dt
dt vv

+
= ⇒ =

+ ∫ ∫  

 
and so the time taken for the particle to increase in velocity from 11 ms−  to 15 ms−  is 
 

5

1

1 2.966v dv
v
+

=∫  seconds. 
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Question 19  Answer is D 
 

Note that 
382.81 387.19 385

2
x +
= = . 

Consider the standard normal distribution: 
 

 
 
Use CAS to find z  if ( )Pr 0.995Z z> = . Then 2.576z = . 
 
So 
 

. 387.19

12385 2.576. 387.19

200

sx z
n

n
n

+ =

+ =

≈
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Question 20  Answer is B 
 
We have  
 

( )
( )

731

15sd
40

E X

X

=

=   

Therefore: 
 

( )value = 2 Pr 731| 725

0.0114

p X µ− × > =

=
  

 

 
 
Note that this can also be found using the zTest command: 
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SECTION B 
 
Question 1 

a.  
Use CAS to find the coordinates of the point of inflection: (0.362,0.659)  [A2] 
 

 
 
 
b.  

Note that 2

4( 1) 3 1
4 2 2

( )f x
x x

x
x

−
=

− +
= +

−
 and so the asymptotes are 2x = , 2x = −  and 0y = . 

    [A2] 
1 mark for vertical asymptotes and 1 for horizontal asymptote 
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c. 
 
The graph of ( )y f x=  is plotted below: 
 

 
 
The asymptotes, the axis intercepts and the point of inflection are labelled. [A3] 

1 mark for correct sketch, 1 mark for asymptotes correct and labelled, 1 mark for coordinates 
 
 
 
d i. 
The volume of the solid is  
 

( )
2 21 1

220 0 2

4( 1) 16( 1)
4 4

x xdx dxV
x x

π π− −  = − 
=

−
∫ ∫ . [A2] 

1 mark correct terminals and dx , 1 mark integrand and π  
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ii.  

Use CAS to find ( )4 3log (3)
2 eV π

−= . [A1] 
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Question 2 

a. 

The cartesian equation of particle A  is 
2

y x
= , 1x ≥ − . [A1] 

The cartesian equation of particle B  is 
2 22 1

2 2
x y−   + =   

   
 or 

2 2( 2) 1
9 4

x y−
+ = . [A1] 

 
b. 
The path of each particle is plotted below: 

 
 [A3] 

1 mark each particle sketched, 1 mark for directions of both 
 

Note that particle A  begins at the point 11,
2

 − − 
 

 and particle B  begins at the point (2, 2)  and 

moves in a clockwise direction. 
 
c. 
The particles are in the same x -position when 3.106t ≈  and are in the same y -position when 

1.456t ≈ . [A1] 
Therefore they do not collide. [A1] 

With evidence 
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d. i.  
The distance between the particles at any time t  is 
 

( )
2

2 1r ( ) r ( ) 3sin( ) 2 1 2cos( )
2A B

tt t t t t − − = + − + + − 
  

 

Note that this can quickly entered into the calculator using the Norm command: 
 

 
 
Using CAS we find that the articles are closest to each other when 6.987t =  seconds (correct to 
three decimal places). 
 [A1] 
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ii.  
Again, using the Norm command, we find that the closest the particles are to each other is 2.52  
metres (correct to two decimal places). 
 [A1] 
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Question 3 

a. 
The forces are labelled on the diagram: 
 

    
 
     [A1]  
b.  

Consider a single 7  kg mass acted upon by forces 2g  and ( )05 5sin 3
2

gg ° = : 

 

 
 

Then 25 1 72 7  ms
2 14 10

g g a a g −− = ⇒ = =  [A2] 

 
c.  
 
Consider the hanging mass: 
 

 
 

0
2 2 7

1
7 2
5
21

T

T g

g

= ×

+

=

−

=   [A1]  
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d. 

Use the constant acceleration formula 2 2 2u asv = + : 
 

2 72 5 7
10

v = × × =   

Therefore 7v = .  [A1] 
 
 
e. i.  
After the string breaks, the equation of motion for the mass is  
 

25 0.2 5
2
g v aF − ==   [A1] 

 

Therefore 21
2 25
g va −=  and so 21

2 25
v dv g v

dx
= − .  

 
The mass must travel a further 5 metres to reach the bottom of the inclined plane.  
An equation which gives the velocity 1v  at the bottom of the plane is  
 

1

7 2
51

2 25

v v dvg v
=

−
∫  or 1

27

50 5
25 2

v v dv
g v

=
−∫  [A2] 

Correct integrand, correct terminals with equation 
 
Note that a different symbol (in this case we have used 1v ) should be used. 
 
 
ii. 
Solving using CAS gives 1

1 6.71 msv −=  correct to two decimal places as the speed at which the 
particle reaches the bottom of the plane.  [A1] 
 

 
 

Note that 075 11.
2

v g
< ≈  in order for the integral to be defined. This allows bounds to be 

placed on the solution.  
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Question 4 

a. 

Concentration
10 20 10 10 10

x x x
V t t t

= = =
+ − +

. 

 
 

Answer:  
10 10

x
t+

. [A1] 

 
 
 
 
 
 
b. 

dx
dt

= (inflow of DHA)− (outflow of DHA) 

 
 
= (rate of inflow of DHA)× (concentration of DHA in inflow) 

  − (rate of outflow of DHA)× (concentration of DHA in 
outflow). 

 
 

Substitute concentration of DHA in outflow 
10 10

x
t

=
+

 from part a.: 

 
dx
dt

= 0.2(20) (10)
10 10

t xe
t

− −
+

 * 

 
 

0.220
1

t xe
t

−= −
+

. * 

 
 

0.220
1

tdx x e
dt t

−⇒ + =
+

. * 

 
 
 All lines labelled *  [A1] 
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c. 

Use a CAS to solve the differential equation 0.220
1

tdx x e
dt t

−+ =
+

 

subject to the initial condition (0) 0x = : 
 
 

( )/5 /5100 6 6

1

t te e t
x

t

− − −
=

+
  or  

/5600 100( 6)
1

tt ex
t

−− +
=

+
. [A1] 

 
 
Use a CAS to solve ( ) 30x t = : 

3.96t =   or  16.02t =   (correct to two decimal places) 
 
 
The value of t for which x is decreasing is required. 
 
Option 1:  Inspect a graph of ( )x x t=  (draw the graph using a CAS). 
 

Option 2:  Choose the value of t such that 0dx
dt

<  when 30x = . 

Substitute 30x =  into 0.220
1

tdx xe
dt t

−= −
+

: 

0.2 3020
1

tdx e
dt t

−= −
+

. 

Use a CAS to test the value of 
dx
dt

 for 3.96t =  and 16.02t = : 

3.96t = :  0dx
dt

> . 16.02t = :  0dx
dt

< . 

 
 
Answer:  16.02t = .  [A1] 
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d.  

 Step size:  20 seconds
1
3

=  minute. 

Note:  The unit of time in the differential equation is minutes therefore the 
step size must be converted from seconds to minutes. 
 
 
 From the initial condition (0) 0x = :  0 0x =  and 0 0t = . 
 
 

 0.220
1

tdx xe
dt t

−= −
+

. 

 
 
 The number of steps in 3 minutes is 9 therefore the value of 9x  is required. 
 
Use a CAS to run Euler’s Method with the above input data. 
 
 
Answer:  27.81.  [A1] 
 
 
 
 
e. 

Use a CAS to substitute 4=t  into the solution to the differential equation 
found in part c.: 
 

30.134207x = .  [A1] 
 
Note: More accuracy than the final answer requires must be used so as to avoid 
rounding error. 
 
 

Substitute 4t =  and 30.134207x =  into 0.220
1

tdx xe
dt t

−= −
+

: 

 
 

2.960dx
dt

=  grams per minute (correct to three decimal places). 

 
 
Answer:  2.960  grams per minute.  [A1] 
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f. 

By inspection of 0.220
1

tdx xe
dt t

−= −
+

: 

 
 

Rate of outflow of DHA
1

x
t

=
+

  [M1] 

 
 

where 
/5600 100( 6)

1

tt ex
t

−− +
=

+
 is the solution to the differential equation found in part c. 

 
 
Therefore the amount of DHA that has flowed out of the tank over the first 8 minutes is 
given by 
 
 

8

0

 
1

x dt
t+∫   [M1] 

 where 
/5600 100( 6)

1

tt ex
t

−− +
=

+
 

 
44.5498=  grams (correct to four decimal places). 

 
 
Answer:  44.5.  [A1] 
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Question 5 

a. 

The given relation is a circle. It can be written in standard form as | (1 ) | 1z i− − = . 

By inspection of the standard form: 

Centre at 1z i= − . 

Radius 1r = . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     [M1] 

     Correct centre and radius are required. 
 
 
 
 
 
  

Im(z)

Re(z)

 

1 

 

2 

 

– 1 

 

– 2 

 

1 

 

2 

 

– 1 

 

– 2 
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b. i. 

By symmetry, the value of z with the largest modulus is represented by the point 
of intersection A of the circle and the line passing through the origin O and centre 

(1,  1)C −  of the circle. 
  Note:  Let P be a point on the circle. 
  From triangle OPC:  OP OC CP≤ +  
  therefore the maximum value of OP  
occurs 
  at P when the points O, C and P are 
collinear. 
 
 
 
 
 
 
 
 
 
 
 
 
Algebraic Method: 

Circle:  2 2( 1) ( 1) 1x y− + + = . ... (1) 

Line:  y x= − . ... (2) 
     [M1] 

  Both equations. 
Use a CAS to solve equations (1) and (2) simultaneously: 
 

11
2

x = ±       
2 1

2
±

=       
2 2

2
±

= . 

 

Reject 
2 2

2
x −
=  (corresponds to minimum modulus). 

 
 
Geometric Method: 

| | 2 1z OC CA= + = + .            Arg( )
4

z π
= − . 

 

Therefore the polar form of z is ( 2 1)cis
4

z π = + − 
 

. [A1] 

 
 

Answer:  2 2 2 2
2 2

z i
   + +

= −      
   

.  [A1]

Im(z)

Re(z)

 

1 

 

2 

 

– 1 

 

– 2 

 

1 

 

2 

 

– 1 

 

– 2 

C 

O 

A 

Im(z)

Re(z)

 

1 

 

2 

 

– 1 

 

– 2 

 

1 

 

2 

 

– 1 

 

– 2 

C 

O 

P 
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b. ii. 

By inspection of the graph in part a. the largest principal argument is 0 (when 1z = ). 
 
 
Answer:  1z = .  [A1] 
 
 
c. i. 

It is required that the distance of the point representing z x iy= +  from the origin 

to the circle is 3 :  2 2 3x y+ = . 
 
Circle:  2 2( 1) ( 1) 1x y− + + = . ... (1) 

2 2 3x y+ = . … (3) 
     [M1] 

  Both equations. 
Use a CAS to solve equations (1) and (3) simultaneously: 
 

2 2
2

x +
= ,  2 2

2
y − +
= . 

 
2 2

2
x −
= ,  2 2

2
y − −
= . 

 
 

Answer:  
2

)22(
2

22 +−
+

+
= iz ,      

2
)22(

2
22 −−
+

−
= iz . [A1] 

 
c. ii. 
The value of z represented by the point of intersection of the circle and the line passing 
through the origin with gradient tan( )m θ=  where 1tan ( 2)θ −= −  is required. 
 
Circle:  2 2( 1) ( 1) 1x y− + + = . ... (1) 

Line:  2y x= − . … (4) 
     [M1] 

  Both equations. 
Use a CAS to solve equations (1) and (4) simultaneously: 
 

1x = ,  2y = − . 
 

1
5

x = ,  
2
5

y = − . 

 

Answer:  1 2z i= − ,      
1 2
5 5

z i= − .  [A1] 
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d. 
Compare | 1 | 1z i− + =  with 2 (1 2) | 2 2 |z ai z b i− + + = − + : 

 
 | 1 | 1z i− + =  
 

2| 1 | 1z i⇒ − + =  
 

( 1 )( 1 ) 1z i z i⇒ − + − + =  
 

( 1 )( 1 ) 1z i z i⇒ − + − − = . 
 
 
Expand using a CAS:  ( 1 ) ( 1 ) 1 0zz i z i z+ − − + − + + = . …. (1) 
 
 
 2 (1 2) | 2 2 |z ai z b i− + + = − +  

 
2 22 (1 2) | 2 2 |z ai z b i⇒ − + + = − +  

 

( )( ) ( )2 (1 2) (1 2) 2 2 (2 2 )z ai z ai z b i z b i⇒ − + + − + + = − + − +  

 

( )( ) ( )2 (1 2) (1 2) 2 2 (2 2 )z ai z ai z b i z b i⇒ − + + − + − = − + − −  since ,a b R∈ . 

 
 
Expand both sides using a CAS: 
 
 

( ) ( ) 22 2 (1 2) 2 (1 2) 6 4 2 2zz ai z ai z a+ − + − + − + + + + +  

 24 ( 2 4 ) ( 2 4 ) 4zz b i z b i z b= + − − + − + + +  
 
 

( ) ( )2 2 4 2(1 2) 2 2 4 2(1 2) 2zz b i ai z b i ai z⇒ + − − + + + + − + + + −  

 2 22 4 2 2 0b a+ − − − = . …. (2) 
 
Compare equations (1) and (2). 

Consider the coefficients of either z or z : 
 
2( 1 ) 2 4 2(1 2) 2i b i ai− − = − − + + +  
 

1 (1 2) ( 2)i b a i⇒ − − = − + + + − . …. (3) [A1] 
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Equate real and imaginary parts of equation (3). 
 
Real parts:  1 (1 2)b− = − + +       2 2b⇒ = + . 
 
Imaginary parts:  1 2a− = −       1a⇒ = . 
 
 
Answer:  1a = ,    2 2b = + . [A1] 
 
 
 
Note:  These answers can be checked by comparing the constant terms of equations (1) and (2). 
 

2 22 2 4 2 2b a= − − −  
 

( )2
2 2 2 2 4 2 2 0⇒ = + − − − =  . 
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Question 6 

a. 

 Let X be the random variable “Mass (grams) of a Wakandan apple”. 
 
 X ~ Normal ( )125,   20X Xµ σ= = . 
 
 Let the number of apples in a paper bag be n. 
 
 Let W be the random variable “Sum of mass (grams) of n apples”. 
 

1 2 nW X X X= + + +  
 
where 1X , 2X , … nX  are independent copies of X. 
 
Note: Using the random variable nX  is incorrect: 1 2 nX X X nX+ + + ≠ . 
 
 The largest value of n such that Pr( 2000) 0.9W < >  is required. 
 
Note: Must convert 2 kg into 2000 grams since the unit of X is grams. 
 
 W follows a normal distribution since 1X , 2X , … nX  are independent normal random variables. 
 
 

1 2
E( ) W X X X Xn

W nµ µ µ µ µ= = + + = 125n= . 
 
 1 2Var( ) Var( ) Var( ) Var( )nW X X X= + +       Var( )n X= 2(20)n=  
 

sd( ) 20WW nσ⇒ = = . 
 
 Therefore  W ~ Normal ( )125 ,   20W Wn nµ σ= = . [M1] 

 
 The largest value of n such that Pr( 2000) 0.9W < >  is required. 
 
 
Answer:  15. [A1] 
 
  



2021 MAV Specialist Mathematics Trial Exam 2, Solutions 31 
 

©The Mathematical Association of Victoria, 2021 
 

Method 1: 
 
 Define the function 
 

( )f x =normCdf ( ),  2000,  125 ,  20x x−∞ . 

                                     
                          
 Lower   Upper    
 value     value

W Wσµ
↑ ↑ ↑ ↑

 

 
The smallest value of x Z +∈  such that ( ) 0.9f x >  is required. 
 
 Solve using a CAS from either a table of values, solving ( ) 0.9f x =  or trial-and-error:  15x = . 
 
 
Method 2: 
 
 Find the value of z such that Pr( ) 0.9Z z< = . 
 
Use the inverse normal command on a CAS:  1.282z = . 
 
Note: Sufficient accuracy is required to ensure that the final answer is correct to the nearest integer. 
 

 W

W

WZ µ
σ
−

=       2000 1251.282
20

n
n

−
⇒ = . 

 
Solve using a CAS:  15.2n = . 
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b. i. 

Answer: 0H :  125Xµ = . 

 1H :  125Xµ ≠ . 
  [A1] 

Both statements are required. 
 
 
b. ii. 

The probability of rejecting 0H  when it is true is the level of significance 
of the statistical test. 

2% level of significance 0.02α⇔ = . 
 
 
Answer:  0.02. [A1] 
 
 
 
b. iii. 

( )* *
1 2,  C C  is the interval such that 0H  is accepted at the 2% level of significance when 

the sample mean ( )* *
1 2,  x C C∈ . 

 
Note:  ( )* *

1 2,  C C  is not a 98% confidence interval. A 98% confidence interval is the 

interval such that 0H  is accepted at the 2% level of significance when it contains Xµ  
(the population mean under 0H ). 
 

  0H  is accepted at the 2% level of siginificance if ( )* *
1 2,  x C C∈  

therefore 0H  is rejected at the 2% level of significance if *
1x C<  or *

2x C> . 
 

  Sample of size 30 therefore X  ~ Normal 20125,   
30XX Xµ µ σ 

= = = 
 

. [A1] 

 
  2% level of significance 0.02α⇔ = . 
 

  ( )*
1

0.02Pr 0.01
2

X C< = = .            ( )*
2

0.02Pr 0.01
2

X C> = = . [M1] 

 
Use the inverse normal command on a CAS: 
 
Answer:  *

1 116.51C = .            *
2 133.50C = . [A1] 

Both values are required. 
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b. iv. 

Use a CAS. 
 
Answer:  ( )115.21,  132.20 . [A1] 
 
 
 
b. v. 

Answer:  0H  should not be rejected at the 2% level of significance. 
 
Accept either of the following justifications: 
 

  ( )* *
1 2,  x C C∈  where x  is the observed sample mean:  ( )123.51 116.51,  133.49∈ . 

 
  2% level of significance⇔ 98% confidence interval. 

125Xµ =  lies inside the 98% confidence interval ( )115.21,  132.20 . 
   [H1] 

Consequential on answers to part iii. or part iv. 
 
Note: Calculating the p-value ( 0.72p α= >  therefore 0H  is not rejected) is a valid 
but ridiculous justification given the intervals calculated in part iii. and part iv. 
 
 
b. vi. 

  X  ~ Normal 20,   
30XX Xµ µ σ 

= = 
 

. 

 

 0H  is accepted if ( )* *
1 2,  x C C∈  where *

1 116.51C =  and *
2 133.49C =  (from part iii.) 

 
 Therefore the required probability is given by 
 

( )* *
1 2 1Pr |  trueC X C H< < ( )* *

1 2Pr | 114XC X C µ= < < =  

 

( )Pr 116.51 133.49 | 114XX µ= < < = . [H1] 

Consequential on answers to part iii. 
 
 Use the normal distribution command on a CAS: 
 

( )Pr 116.51 133.49 0.2459X< < = . 

 
Answer:  0.2459. [A1] 
 
 
 
Remark:  To accept 0H  when 1H  is true is to commit a type 2 error.  
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Distribution of X  when 0H  is true: 
 
 
 
 
 
 
 
                                      0.01

  ↓
                                 0.01

  ↓
 

                                                                                              x  

 
 
 
 
 
Distribution of X  when 0H  is false: 
 
 
 
 

                                                       

Type 2 error

0 0   Pr(Accept |  false)
   0.2459

                                         

H H
=





 

                                                                                              x  
 
 

 
 
             Reject 0H                        Accept 0H          Reject 0H  
                                                                                              X  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

END OF SOLUTIONS 
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