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Question 1 B

B is correct. The graph of 
2 24x ky
x k
−

=
−

 has a vertical asymptote when the denominator equals zero.

So, x k=  is a vertical asymptote.

y
x k

x k

x k
k

x k

�
�
�

� � �
�

2 2

2

4

3
 (division or use of a CAS expand or  proper fraction command)

The graph has a non-vertical (oblique) asymptote with equation y x k= +  since y x k→ +  as x ���.

A, C, D and E are incorrect. These options do not give every correct asymptote.

Question 2 D
D is correct.

To determine the point of inflection:

1 1
2 2

2

2

a a

x

a

− +
+

=

=

The graph has a point of inflection at .
2
a

Note: This result could also be established by solving 
2

2 0d y
dx

=  for x.

When :
2
ax =

( )

arccos 2
2 4

arccos 0
4

2 4

4

ay a π

π

π π

π

  = − −  
  

= −

= −

=

So, the graph has a point of inflection at 
a

2 4
, .
��

�
�

�
�
�

At , ,
2 4
a π 

 
 

 2.dy
dx

=

For example, by considering the graph of ( )arccos 2
4

y a x π
= − −  or the graph of 

dy

dx
 versus x, the gradient 

is a minimum and is equal to 2.

A, B, C and E are incorrect. These options do not give correct statements.
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Question 3 E

( ) ( ) ( )
( )

( )
( )

( ) ( ) ( ) ( )
( ) ( )

( )( )
( ) ( )

cos sin
cot tan

sin cos

cos cos sin sin
sin cos

cos
sin cos

ax bx
ax bx

ax bx

ax bx ax bx
ax bx

a b x
ax bx

+ = +

+
=

−
=

Note: cos( )cos( ) sin( )sin( ) cos .ax bx ax bx a b x� � �� �� �

Question 4 A
A is correct. Let the square roots of z be z1 and z 2.

( )cos sinz r iq q= +  and so cos sin .
2 2

z r iq q = ± + 
 

Hence, z r i1 2 2
� ��

�
�

�
�
�cos sin

� �
 and z r i2 2 2

� � ��
�
�

�
�
�cos sin .

� �

If z1 has coordinates ( )1 1, ,x y  for example, then z 2 has coordinates � �� �x y1 1, ,  where 1 cos
2

x r q
=   

and 1 sin .
2

y r q
=

Points C and E satisfy this.

B, C, D and E are incorrect. Points A, B and D do not represent the square roots of z.

Question 5 C

2 cos sin
6 6

n n n nz iπ π = + 
 

nz  is real when sin 0.
6

nπ
=

,
6

n kπ π=  where k Z∈ .

6 ,n k=  where k Z∈ .

Hence, n � � �0 6 12, , , ....

Given 100, 2 .nn n nz z z> = =

Hence, 2 100n >  and n is a multiple of 6.

2 64 1006 � �  and 2 4096 10012 � � .

So, the least integer value of n is 12.
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Question 6 C
C is correct. The equation z z z3 27 17 15 0� � � �  has roots 3, 2 , and 2 .i i+ −

So, 3, 2u v i= = +  and 2 .v i= −
Testing each alternative finds that C is not a correct expression, as vv i i� �� � �� � �2 2 5.

A, B, D and E are incorrect. These options all show correct expressions. 

Question 7 E
E is correct. Differentiating y x x� � � �3 22 1 twice with respect to x gives 

d y

dx
x

2

2
6 4� � � .

The graph is concave up for values of x such that 
2

2 0.d y
dx

>

Solving 6 4 0x− + >  for x gives 
2 .
3

x <  Hence, the graph is concave up for 
2 .
3

x <

The graph is concave down for values of x such that 
2

2 0.d y
dx

<

Solving 6 4 0x− + <  for x gives 
2 .
3

x >  Hence the graph is concave down for 
2 .
3

x >

The graph has a point of inflection at 
2
3

x =  and hence a change of concavity occurs there.

Therefore, the curve is concave up on the interval ���
�
�

�
�
�,

2

3
 and concave down on the interval 

2

3
, .��

�
�

�
�
�

A, B, C and D are incorrect. These statements are incorrect for the given curve.

Question 8 A
Let the volume be V.

( )( )

( )( )

22
0

22
0

sin

sin

V x x dx

x x dx

π

π

π

π

=

=

∫

∫
Applying the double-angle formula ( ) ( )2cos 2 1 2sinx x= −  gives ( ) ( )( )2 1sin 1 cos 2 .

2
x x= −

So ( )( )2
0

cos 2 .
2

V x x x dx
π

π
= −∫

Question 9 C
1 1inflow rate (in grams min ) outflow rate (in grams min )dS

dt
− −= −

The inflow rate is 7 6 42 1� � � (grams min ).

At any time t, the tank contains 150 2�� �t  litres, as there is 6 L min–1 flowing in and 8 L min–1  

flowing out.

So, the outflow rate is 
88 .

150 2 150 2
S S

t t
× =

− −

Hence, 
842 .

150 2
dS S
dt t

= −
−
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Question 10 B

From the direction field, 0dy
dx

=  at y � �2.

This corresponds to the differential equation 
dy

dx

y
�

�2 4

4
.

Question 11 D
Let the unit vector be 



û  where 
 





ˆ cos cos cosu i j k� � � � � � � � �� � �  

and 


ˆ cos cos cos .u � � � � � � � � � �2 2 2 1� � �

In general, the acute or obtuse angles ,α β  and γ  denote the angles formed between 


û  and the unit vectors 





i j,  and 


k  respectively.

( ) ( ) ( )

( )

û cos 60 i cos 45 j cos k

1 2= i j cos k
2 2

γ

γ

= ° + ° +

+ +

 



 



( ) ( ) ( )

( )

( )

( )

2 2 2

2

2

cos 60 cos 45 cos 1
1 1 cos 1
4 2

1cos
4

1cos
2

γ

γ

γ

γ

° + ° + =

+ + =

=

= ±

As γ  is obtuse, ( ) 1cos .
2

γ = −

So 1 2 1û i j k
2 2 2

= + −
 



 and hence ( )1û i 2 j k .
2

= + −
 



Question 12 E
The scalar resolute of 



a  in the direction of 


b,  given by 
a bˆa b ,

b
⋅

⋅ =
 

 



 is a ‘signed length’. Its value can  

be positive or negative.

The magnitude of the scalar resolute of 


a  in the direction of 


b  is given by 
a b 1ˆa b b a ,

b b
⋅

⋅ = = ⋅
 

   

 

 

where b a a b .⋅ = ⋅
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Question 13 D
The parametric equations are:

2 1x t= −  (1)

2y t=  (2)

From (1), 
1.

2
xt +

=

Substituting 
1

2
xt +

=  into 2y t=  gives 
21 .

2
xy + =  

 

As 0t ≥  from (1), 
1 0

2
x +

≥  and so 1.x ≥ −

Hence the cartesian equation is y
x

x�
��

�
�

�
�
� � �

1

2
1

2

, .

Question 14 E
E is correct. The particle’s direction of motion is given by the velocity vector ( )r .t



( ) ( ) ( )r 3sin i 3 cos jt t t= − +

 



r 3sin i 3 cos j
6 6 6

3 3i j
2 2

π π π     = − +     
     

= − +



 







The direction of r
6
π 
 
 




 corresponds to a north-westerly direction.

A, B, C and D are incorrect. These compass directions do not give the correct direction for the movement 

of the particle at .
6

t π
=

Question 15 D
D is correct. This is achieved via process of elimination.

A is incorrect. It is a correct statement. 

Solving 26 4 2 0x x+ − =  for x gives 1, 3.x = −

These are the extreme points of the motion and where the particle changes direction.

B is incorrect. It is a correct statement.

2 21 3 2
2

v x x= + −

21
2

2 2

da v
dx

x

 =  
 

= −

So, ( )2 1 .a x= − −

C is incorrect. It is a correct statement. At 1,x =  0.a =
E is incorrect. It is a correct statement. The particle’s maximum velocity occurs where its acceleration  
is zero, which is at 1.x =
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Question 16 B

The distance run by the athlete in the first 20 seconds is 
1 4 9 16 9 162
2
× × + × =  (m). Alternatively,  

this distance is given by ( )9 20 16 162
2

+ =  (m). In the remaining five seconds of the race, the distance  

run by the athlete is ( )5 9
2

V+  (m). Solving ( )5162 9 200
2

V+ + =  for V gives V = 6.2 (ms–1).

Question 17 C

Resolving forces horizontally: ( )sin 45 12T ° =  and so 
( )
12 .

sin 45
T =

°
  (1)

Resolving forces vertically: ( )cos 45mg T= °   (2)

Substituting (1) into (2) gives:

( )
( )

12cos 45
sin 45

mg
°

=
°

As ( )cot 45 1,° =  12mg =  and so  
12 .m
g

=

Note: This result can also be obtained using Lami’s theorem, 
( ) ( ) ( )

12 .
sin 135 sin 135 sin 90

mg T 
= =  ° ° ° 

Question 18 A
Considering the forces acting on the particle of mass m2 kg:

T m g� �2 0  and so T m g= 2   (1)

Considering the forces acting on the particle of mass m1 kg parallel to the plane:

T m g� �1 0sin�  and so T m g� 1 sin .�   (2)

Substituting (1) into (2) and solving for q gives 2

1
arcsin .m

m
q

 
=  

 

Question 19 A
Consider a random variable X with mean m and standard deviation s. Provided that the sample size  

n is large enough, the distribution of the sample mean X  is approximately normal with mean m  

and standard deviation .
n
s  Here, the sample of 50n =  is considered large enough.

Given that � � 24  and � � 3,  X ~ ,N 24
9

50
�
�
�

�
�
�  and sd X� � � 3

50
.

Question 20 D
An approximate 90% confidence interval for m is x

s

n
x

s

n
� �

�

�
�

�

�
�1 64485 1 64485. ... , . ... .

The width of the approximate 90% confidence interval for m is 2 1 64485× ×. ... .
s

n

Solving 2 1 64485
0 1

4 916 4 884� � � �. ...
.

. .
n

 for n gives 105.685 .n = 

So, the value of n is closest to 106.
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SECTION B

Question 1 (10 marks)

a. I x dx

xe

e e

1
0

4

0
4

1

2
1

� � �

� � � �� ��� ��

� �
�

�
�

�

�
� � � �

� tan

log cos

log log

�

�

��

�
�

�

�
�

� � � � � ��
�
�

�
�
� � � �log log loge e e2 2

1

2
2

1
2 

 

So, ( )1
1 log 2 .
2 eI =

b. ( ) ( )2 24
0

tan tann
nI x x dx

π
−= ∫  M1

1

1

2 2

2 2

� � � � � �
� � � � � � �

tan sec

tan sec

x x

x x  M1

( ) ( )( )2 24
0

tan sec 1n
nI x x dx

π
−⇒ = −∫  (for , 2n Z n∈ ≥ )

c. ( ) ( )( )

( ) ( ) ( )

2 24
0

2 2 24 4
0 0

tan sec 1

tan sec tan

n
n

n n

I x x dx

x x dx x dx

π

π π

−

− −

= −

= −

∫

∫ ∫

 

M1

Let ( )tanu x=  and so ( )2sec .du x
dx

=

When x u= =0 0,  and when x u� �
�
4

1, .  A1

( )
1 2 24
0 0

11

2
0

tan

1

n n
n

n

n

I u du x dx

u I
n

π
− −

−

−

= −

 
= − 

−  

∫ ∫
 M1

2
1

1n nI I
n −⇒ = −
−

 (for , 2n Z n∈ ≥ )

M1

M1
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d. Use 2
1

1n nI I
n −= −
−

 with n = 3 and subsequently n = 5. M1

( )

3 1
1
2
1 1 log 2
2 2 e

I I= −

= −

 

A1

( )

5 3
1
4
1 1 1 log 2
4 2 2 e

I I= −

 = − − 
 

 
M1

So, ( )5
1 1log 2 .
2 4eI = −

Question 2 (9 marks)

a. The parametric equations are ( )tanx s=  and ( )sec .y s=

1 2 2� � � � � �tan secs s  and so 1 2 2� �x y .  M1

Hence, 2 2 1.y x− =
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b. ( )tanx s=  and ( )sec ,y s=  where 0 .
2

s π
< <

Let the gradient of the normal be Nm .

Either:

Use implicit differentiation on 2 2 1y x− =  to find 
dy

dx
 in terms of x and y.

2 2 0dyy x
dx

dy x
dx y

− =

⇒ =

 

M1

( )
( )
( )

( ) ( )( )

tan
sec

sin
1At , cosec

sinN

sdy
dx s

s

P m s
s

=

=

⇒ = − = −
 

A1

Or:

Use 
dy dy ds
dx ds dx

= ×  with ( )2secdx s
ds

=  and ( ) ( )sec tan .dy s s
ds

=

( ) ( )
( )

( )

( ) ( )( )

2
sec tan

sec

sin
1At , cosec

sinN

s sdy
dx s

s

P m s
s

=

=

⇒ = − = −

 M1

  A1

Then:

The equation of the normal is ( ) ( ) ( )( )1sec tan
sin

y s x s
s

− = − −  (or equivalent). M1

( ) ( )cosec 2secy x s s∴ = − +

c. Find the x-coordinate of N by solving ( ) ( )cosec 2sec 0x s s− + =  for x. M1

( )2 tanx s=  and so ( )2 tanON s=  (where s > 0).

( ) ( )1 1 2 tan sec
2 2

A bh s s= = × ×  A1

So, ( ) ( )tan secA s s= .
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d. Either:

Find .dA
ds

 M1

( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

2

3 2

sec sec tan sec tan

sec sec tan

dA s s s s s
ds

s s s

= +

= +

Use .dA dA ds
dt ds dt

= ×

( ) ( ) ( )( ) ( )

( ) ( )

3 2

2 2

sec sec tan cos

sec tan

dA s s s s
dt

s s

= +

= +  A1

Or:

Find 
dA
dt

 by differentiating ( ) ( )tan secA s s=  implicitly (product rule) with respect to t. M1

( )( ) ( ) ( ) ( ) ( )( )( )
( ) ( ) ( )( ) ( )

( ) ( )

2

3 2

2 2

sec sec tan sec tan

sec sec tan cos

sec tan

dA dss s s s s
dt dt

s s s s

s s

= +

= +

= +

 

A1

Then:

When ,
6

s π
=  2 2sec tan .

6 6
dA
dt

π π   = +   
   

2 4sec
6 3
π  = 
 

 and 2 1tan .
6 3
π  = 
 

So, 
5
3

dA
dt

=  when .
6

s π
=  A1

Question 3 (9 marks)

a. 

A

1 m

B

T T

0.6 g 0.4 g

A1
1 mark for correctly showing both weight forces  

and the tension in the string.
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b. The equations of motion for each particle are:

Particle A (↓): 0.6 0.6g T a− =   (1)

Particle B (↑): 0.4 0.4T g a− =   (2) A1

Either:

(2) 0.6 (1) 0.4× − ×  gives ( )0.6 0.4 0.48 0T g+ − =  (or equivalent). M1

Or:

Use CAS to solve (1) and (2) simultaneously for T and a. M1

Then:

So, ( )12  0.48 4.704
25

gT g= =  (newtons). A1

c. Either:

(1) (2)+  gives 0.6 0.4a g g= −  (from part b.).

Or:

The value of a was found by solving (1) and (2) simultaneously for T and a.

Then:

So, ( ) 0.2 1.96
5
ga g= =  (ms–2). A1

d. First consider the motion of particle B travelling upwards under constant acceleration  
for the first 0.5 seconds.

v = u + at with 0,u =  
5
ga =  and 0.5t =  gives ( ) 0.98

10
gv = =  (ms–1). A1

Either:

s ut at� �
1

2
2  with 0,u =  

5
ga =  and 0.5t =  gives ( ) 0.245

40
gs = =  (m). A1

Or:
2 2

2 2

2

2

v u as

v us
a

= +

−
⇒ =

With 0,  and ,
5 10
g gu a v= = =  this gives ( ) 0.245

40
gs = =  (m). A1

Or:

2
u vs t+ =  
 

 with 0 and ,
10
gu v= =  gives ( ) 0.245

40
gs = =  (m). A1

So, after the first 0.5 seconds, particle B is travelling upwards at 
10
g

 (ms–1)  

and is 1.245 metres above the floor.

Then:

Consider the motion of particle B at the instant the string breaks when there is no longer  
any tension in the string.

Solve 21
2

s ut at= +  for t with (1 0.245),s = +  
10
gu = −  (note the change in sign)  

and a = g. M1
2

1.245 0 (rearranged quadratic set to zero)
2 10

gt gt
− − =

0.61t =  (s) (correct to two decimal places) A1
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Question 4 (12 marks) 

a. mkv

mg

correct diagram showing forces A1

b. ma mg mkv a g kv� � � � and so .  A1

c. The particle’s limiting (terminal) velocity corresponds to 0.a =

So, 0 .gg kV V
k

= − ⇒ =  A1

d. Method 1:

Use a CAS differential equation solver feature to solve 
dv g kv
dt

= −  with 0v =   

when 0.t =  M1

ktg gv e
k k

−= −  A1

( )1 ktgv e
k

−= −  and 
gV
k

=  so ( )1 .ktv V e−= −  A1

Method 2:

Separate variables on 
dv g kv
dt

= − , integrate both sides and apply the intial condition. M1

1 dv dt
g kv

=
−∫ ∫

( )1 log

,  where 

e

kt kc

t C g kv
k

Ae g kv A e− −

+ = − −

⇒ = − =

Apply the initial condition to find A.

When 0, 0t v= =  and so .A g=

Hence, .ktge g kv− = −  A1

ktkv g ge−= −

( )1 ktgv e
k

−= −  and 
gV
k

=  so ( )1 .ktv V e−= −  A1
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e. Method 1:

Use a CAS differential equation solver feature to solve ( )dv g kv
dt

= − +  with v U=  

when 0.t =  M1 

ktg gv U e
k k

− = + − 
 

 A1

Solving 0ktg gU e
k k

− + − = 
 

 for t gives 
1 log .e

g kUt
k g

 +
=  

 
 A1

Method 2:

dvm mg mkv
dt

= − −  and so ( ).dv g kv
dt

= − +  A1

Separate variables on ( )dv g kv
dt

= − +  and evaluate a definite integral. M1

0

0

1

1
U

U

t dv
g kv

dv
g kv

= −
+

=
+

∫

∫
So, 

1 log .e
g kUt

k g
 +

=  
 

 A1
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f. Substitute 
1 loge

g kUt
k g

 +
=  

 
 into v V e kt� �� ��1 .  M1

1  (or equivalent)gv V
g kU

 
= − + 

 

A1

Note: The above intermediate answer can be obtained either by use of a  

CAS or with by-hand simplification. The final A1 can be awarded for correct  

alternative expressions such as 1g gv
k g kU
 = − + 

 or 
( )

2
.g gv

k k g kU
= −

+

Either:

gUv
g kU

gU
k

g U
k

=
+

=
 + 
 

Or:

( )1

kUv V
g kU

kU
kV

g kU
k

 
=  + 

 
 

=  
 + 
 

Then:

Use of ,gV
k

=  where appropriate, leads to 
UV

U V+
 (ms–1). A1

Question 5 (13 marks)

a. Let .u x yi= +

( ) ( )( )8 8 8u i x yi i x y i∴ − = + − = + −  M1

8 tan
6

y
x

π−  = − 
 

 and 1tan .
6 3
π − = − 

 

Hence, 
y

x
y x

�
� � � � � �

8 1

3

1

3
8.  A1

As 0x ≠  and ,
6
πq = −  the condition on x is 0.x >  A1

Hence, 1 8,
3

y x= − +  0.x >

b. ( )Arg 8
6

u i π
− = −  is the ray (half-line) emanating from ( )0, 8  but not including  

( )0, 8  that makes an angle of 
6
π

−  with the positive direction of the real axis. A1
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c. Let v x yi� �  and so v x yi� � .

v i v i

x yi i x yi i

� �� � � �� � �
� � �� � � � �� � �

2 2 2 2 8

2 2 2 2 8

x x y y2 24 4 8 8� � � � �  M1

x x y y2 24 4 4 4 8 8 8� �� � � � �� � � � �( )  and so ( ) ( )2 22 2 8.x y− + − =  A1

Note the substitutions can be made either before or after  
the expansion. The expansion is best performed with CAS.

d. This is a circle with centre at ( )2, 2  and radius 2 2.  A1

e. 

4O

Im

– 8–12–16 1612

– 4

–8

Re
– 4 8

4

8

(2, 2)
6
�

correct sketch of ( )Arg 8
6

u i π
− = −  A1

correct sketch of ( ) ( )2 22 2 8x y− + − =  A1
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f. Let d be the minimum distance from the point ( )2, 2  to the ray.

Method 1:

Use the following right-angled triangle to find the length of the adjacent side.  M1

(0, 8)

(0, 2)

6

6
�

The adjacent side has length 6 6 3.
tan

6
π

=
 
 
 

 A1

Find d. 

(2, 2)

d

6√3 – 2

6
�

( )6 3 2 sin
6

3 3 1

d π = −  
 

= −

 

M1

 ,v u d r− = −  where r is the radius of the circle.

So, 3 3 2 2 1v u− = − − . A1

Method 2:

Find the x-coordinate of the point ( ), 2x  on the ray y x� � �
1

3
8.  M1

Solving 2
1

3
8� � �x  for x gives 6 3.x =  A1

Find d. 

(2, 2)

d

6√3 – 2

6
�

( )6 3 2 sin
6

3 3 1

d π = −  
 

= −

 

M1

,v u d r− = −  where r is the radius of the circle.

So, 3 3 2 2 1.v u− = − −  A1
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Method 3:

Find the equation of the line passing through the point ( )2, 2  that is perpendicular to the ray.

( )2 3 2y x− = −

Find the point of intersection of the ray and this line. 

Solving y x� � �
1

3
8  and y x� � �� �2 3 2  gives  

( )3 3 1

2
x

+
=  and 

13 3 .
2

y −
=  M1, A1

Find d. 

( ) 2 23 3 1 13 32 2
2 2

3 3 1

d
 +  − = − + −      

= −

 

M1

,v u d r− = −  where r is the radius of the circle.

So, 3 3 2 2 1.v u− = − −  A1

Question 6 (7 marks)

a. H0 83: ,� �  H1 83: � �  A1

b. 

( )

27~ N 83,
8

-value Pr 86 | 83

0.113

W

p W m

 
  
 
= > =

=

 

A1

As 0.113 0.05,>  we do not reject 0.H  There is no evidence that Tom’s apples weigh  
more than 83 grams on average. A1

c. ( )0 0Pr rejecting |  is true 0.05H H =  A1

d. Find minw  such that ( )minPr | 83 0.05.W w m> = <  M1

min 87.1w =  (grams) (correct to one decimal place) A1

e. ( )Pr 87.1 | 81.8 0.984W m< = =  (correct to three decimal places) A1
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