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Question 1 (2 marks)
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Question 2 (3 marks)

a. If p + q is not even, then p2 + q2 + 1 is not odd. A1

OR

If p + q is odd, then p2 + q2 + 1 is even. A1

b. Letting p + q be odd gives:
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Question 3 (3 marks)
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Question 4 (3 marks)

z3 = –64

Letting z = r cis(q ) gives:

r3cis(3q ) = 64cis(π) M1

When r3 = 64 and 3q = π + 2k, k ∈ Z: 
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Choosing k = 0, 1, 2 gives:
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Question 5 (3 marks)
Proving for n = 1:

LHS = 13 = 1
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Assuming true for n = k:
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Proving true for n = k + 1:
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Question 6 (6 marks)
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Using the identity cos2(t) + sin2(t) = 1 gives:
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The particle’s maximum acceleration occurs when cos2(t) = 1. Therefore:
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Question 7 (4 marks)

a. If A, B and C are collinear, AB AC
� ��� � ���

� �  for some constant l.
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 does not satisfy 3 = –3l. M1

Therefore, the points are not collinear.
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Note: Consequential on answer to Question 7a.
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Question 8 (4 marks)
When sin(2x) = 0:
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Therefore, the smallest non-negative root of f(x) is 
π
4
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Question 9 (4 marks)

u = x2 ⇒ u′ = 2x

v′ = sin(x) ⇒ v = –cos(x) M1

Using integration by parts gives:
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m = x ⇒ m′ = 1

n′ = cos(x) ⇒ n = sin(x) M1
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Question 10 (8 marks)

a. 

O 2.52.01.51.00.5– 0.5–1.0–1.5–2.0–2.5
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correct demonstration of zero gradient at x = 1 and x = –1 and no gradient at y = 0 A1

Note: The solution is obtained by using the initial condition y(0) = 2 and drawing a solution  
curve that is tangential to the direction field.
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b. ydy x dx� �� �� �2 1  M1
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