

SPECIALIST MATHEMATICS 2023

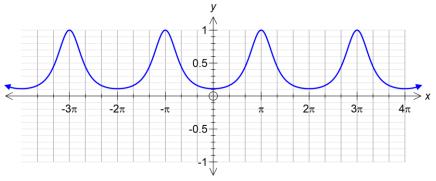
Unit 3

Key Topic Test 14 – Differentiation Applications Technology Active

Recommended writing time*: 45 minutes
Total number of marks available: 30 marks

SOLUTIONS

© TSSM 2023 Page 1 of 7

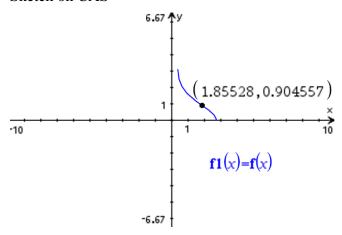

Section A: Multiple-choice questions

Question 1

Answer: A

Explanation:

Sketch on CAS



Question 2

Answer: C

Explanation:

Sketch on CAS

Question 3

Answer: **B**

Explanation:

tangentline(f(x), x, 0) on CAS

© TSSM 2023 Page 2 of 7

Question 4

Answer: **D**

Explanation:

Sketch all options on CAS for the correct answer.

Question 5

Answer: B

Explanation:

Sketch on CAS over the restricted domain or use fmax(f(x), x)

Question 6

Answer: E

Explanation:

$$f'(2)$$
approaches $\begin{cases} 1, & x > 2 \\ -1, & x < 2 \end{cases}$

Derivative does not exist at x = 2

Question 7

Answer: **D**

Explanation:

$$V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi r^2 \left(\frac{r}{\sqrt{3}}\right) \left(\tan(60^\circ) = \frac{r}{h}\right)$$

$$\frac{dr}{dt} = \frac{dr}{dV} \times \frac{dV}{dt} = \frac{\sqrt{3}}{\pi r^2} \times 1.8 = \frac{\sqrt{3}}{\pi (0.9)^2} \times 1.8 = 1.23$$

Section B: Short-answer questions

Question 1

a.

Define
$$f(x) = e^{\frac{2}{3} \cdot x^3}$$

$$\frac{d}{dx}(f(x))$$

$$\frac{2 \cdot x^3}{3}$$

1 mark

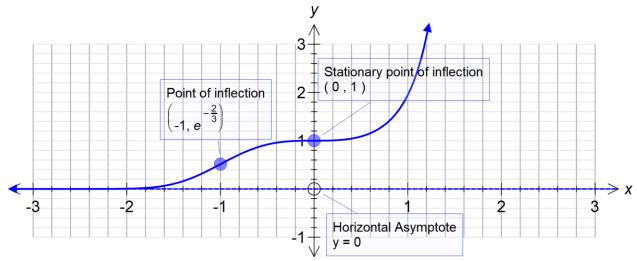
solve
$$\begin{cases} f'(x) = 0 \\ 2 \cdot x^3 \\ 2 \cdot x^2 \cdot e \end{cases} = 0, x \end{cases}$$
 $x = 0$

Stationary point at (0, 1)

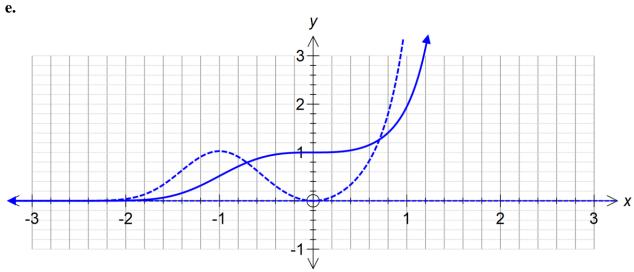
2 marks

c. For point of inflection f''(x) = 0

$$\frac{d}{dx} \left(2 \cdot x^2 \cdot \mathbf{e}^{\frac{2 \cdot x^3}{3}} \right) \qquad \left(4 \cdot x^4 + 4 \cdot x \right) \cdot \mathbf{e}^{\frac{2 \cdot x^3}{3}}$$


$$\operatorname{solve}\left(4 \cdot x^{4} + 4 \cdot x\right) \cdot e^{\frac{2 \cdot x^{3}}{3}} = 0, x$$

$$x = -1 \text{ or } x = 0$$


Inflections points: $\left(-1, e^{-\frac{2}{3}}\right)$ and (0, 1)

3 marks

d.

3 marks

2 marks

Question 2

a.

Define
$$f(x) = -(\ln(x))^2 - 2 \cdot \ln(x) + 3$$
 Done

$$\frac{-2 \cdot \ln(x)}{x} - \frac{2}{x}$$

solve
$$\left(\frac{-2 \cdot \ln(x)}{x} - \frac{2}{x} = 0, x\right)$$

$$x=e^{-1}$$

$$f(x)|x=e^{-1}$$

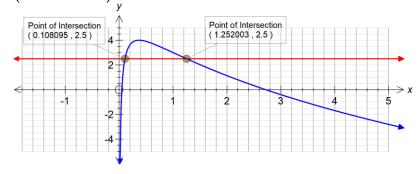
4

 $(e^{-1}, 4)$ is a point of maxima.

2 marks

b.
$$f''(x) = \frac{2 \ln(x)}{x^2}$$

 $f''(x) = 0 \rightarrow x = 1$
Inflection point (1, 3)
Tangent line:

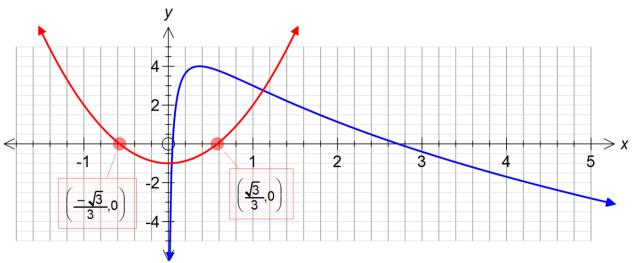

y = 5 - 2x

3 marks

c.
$$f'(u) = \tan(120^\circ)$$

 $-\frac{2\ln(u)}{u} - \frac{2}{u} = -\sqrt{3}$
 $u = 0.6408$ or 1.8894
 $v = 3.6920$ or 1.3227

3 marks


d.
$$f(x) = 2.5 \rightarrow x = e^{-\frac{\sqrt{6}}{2} - 1}$$
 or $e^{\frac{\sqrt{6}}{2} - 1}$ $\left(e^{-\frac{\sqrt{6}}{2} - 1}, e^{\frac{\sqrt{6}}{2} - 1}\right)$

2 marks

e. Range of $g \subseteq Domain \ of \ f$

Range of $g \subseteq (0, \infty)$

The parabola must be restricted in a way to give a range of $(0, \infty)$, so

$$\left(-\infty, -\frac{\sqrt{3}}{3}\right] \text{ or } \left[\frac{\sqrt{3}}{3}, \infty\right)$$

Since minimum positive value of a is required, $a = \frac{\sqrt{3}}{3}$.

2 marks

© TSSM 2023 Page 7 of 7