Student Name:

SPECIALIST MATHEMATICS 2023

Unit 4 Key Topic Test 2 – Antidifferentiation applications Technology Active

Recommended writing time*: 45 minutes Total number of marks available: 30 marks

QUESTION BOOK

© TSSM 2023 Page 1 of 9

^{*} The recommended writing time is a guide to the time students should take to complete this test. Teachers may wish to alter this time and can do so at their own discretion.

Conditions and restrictions

- Students are permitted to bring into the room for this test: pens, pencils, highlighters, erasers, sharpeners and rulers, one CAS and bound reference book
- Students are NOT permitted to bring into the room for this test: blank sheets of paper and/or white out liquid/tape.

Materials supplied

Question and answer book of 9 pages.

Instructions

- Print your name in the space provided on the top of the front page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic communication devices into the room for this test.

© TSSM 2023 Page 2 of 9

Instructions for Section A

- All questions are worth one mark.
- Answer all questions by circling the correct response.
- Marks are not deducted for incorrect answers.
- No marks will be awarded if more than one answer is completed for any question.

Question 1

The approximate area under the curve $y = \sqrt{1 - 2x}$ between x = -1 and $x = \frac{1}{2}$ using the trapezoidal rule is

- $\mathbf{A.} \quad \sqrt{3}$
- **B.** $4(\sqrt{3}+2\sqrt{2}+2)$
- C. $\sqrt{3} + 2\sqrt{2} + 2$
- **D.** $\frac{1}{4}(\sqrt{3}+2\sqrt{2}+2)$
- E. $\frac{1}{2}(\sqrt{3}+2\sqrt{2}+2)$

Question 2

For a given function f(x), $f''(x) = \frac{x}{1+x^2}$.

The interval on which the graph of f(x) is concave up is

- $\mathbf{A}.(0,\infty)$
- **B.** $(-\infty, 0)$
- $\mathbf{C}.[0,\infty)$
- **D.** $(-\infty, 0]$
- $\mathbf{E}.R$

Question 3

Using the trapezoidal rule with an interval size of 1, the approximate value of the integral is $\int_0^3 \left(\frac{1}{3}\right)^x dx$ is

- **A.** 0.877
- **B.** 0.963
- **C.** 1.753
- **D.** 1.926
- E. 1.976

Question 4

The graph of $y = \sin(2x)$ is given below.

The area of the shaded region is given by

$$\mathbf{A.} \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \sin(2x) \ dx$$

B.
$$2\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \sin(2x) \ dx$$

$$\mathbf{C.} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin(2x) \ dx$$

D.
$$\int_{\frac{3\pi}{4}}^{\frac{5\pi}{4}} \sin(2x) \ dx$$

E.
$$2\int_{\pi}^{\frac{3\pi}{4}} \sin(2x) \ dx$$

Question 5

The region bounded by the coordinate axes and the graph of $y = \cos^3(x)$, $0 \le x \le \frac{\pi}{2}$ is rotated about the y-axis to form a solid of revolution. It is also rotated about the x-axis to form a solid of revolution.

The different in volume of the solids is given by

A. 0

B. 1

C. 2

D. $\frac{5\pi}{32}$

 $\mathbf{E} \cdot \frac{5\pi}{16}$

Question 6

The length of the curve defined by parametric equations $x = \sin^2(t)$ and $y = \cos^2(t)$ for $0 \le t \le \frac{\pi}{2}$ can be found by calculating

$$\mathbf{A.} \int_0^{\frac{\pi}{2}} \sin(2t) dt$$

B.
$$\int_0^{\frac{\pi}{2}} \sqrt{2 \sin^2(2t)} dt$$

$$\mathbf{C.} \int_0^{\frac{\pi}{2}} \sqrt{2\sin^2(t)} \, dt$$

D.
$$\int_0^{\frac{\pi}{2}} \sqrt{\sin^4(t) + \cos^4(t)} dt$$

E.
$$\int_0^{\frac{\pi}{2}} 1 \, dt$$

Question 7

The area of the surface generated by revolving the part of the curve $y = 2x^{\frac{1}{3}}$ from (0, 0) to (8, 2) about the x-axis is closest to

- **A.** 25.99
- **B.** 60.86
- C. 84.51
- **D.** 163.31
- E. 173.04

Question 8

The area of the surface generated by revolving the part of the curve $y = x^3$ from (0, 0) to (3, 27) about the y-axis is closest to

- A. 21.97
- **B.** 22.61
- C. 173.78
- **D.** 365.23
- **E.** 384.05

SECTION B

Instructions for Section B

- Answer each question in the space provided.
- Please provide appropriate workings and use exact answers unless otherwise specified.

Question 1 (11	marks)
----------------	--------

The rate, in liters per hour, at which water fills an empty tank is $\frac{dV}{dt} = 0.048e^{0.4t}$, where t is time in hours.

Determine the		 	
			$\frac{2}{1}$ e, V in the ta
Write a rule to			

© TSSM 2023 Page 6 of 9

3 marks

The	tank is full after 7 ln(6).
c.	What is the maximum capacity of the tank? Give your answer correct to one decimal place.
	2 marks
TT1	
	surface area of the tank can be found by rotating the curve $y = \sqrt{x}$ from $x = 1$ to $x = 2$ ut the x-axis.
d.	Write down an integral to find the surface area of this tank and hence show that the surface area is $\frac{\pi}{6}(27 - 5\sqrt{5})$.

© TSSM 2023 Page 7 of 9

4 marks

Question 2 (11 marks)

A curve is defined by the parametric equations

 $x(t) = 3\cos(2t)$ and $y(t) = 3\sin(2t)$, $0 \le t \le \frac{\pi}{4}$

	curve.
_	
_	
_	
_	
_	
	3 mar
I	Find the Cartesian equation of the curve.
_	1 ma
(t	Calculate the area, bounded by the curve $x(t) = 3\cos(2t)$ and $y(t) = 3\sin(2t)$, $0 \le \frac{\pi}{4}$, the line $y = 2\sqrt{2}$ and the y-axis. Answer correct to 2 decimal places.
- t	Calculate the area, bounded by the curve $x(t) = 3\cos(2t)$ and $y(t) = 3\sin(2t)$, 0
t t	Calculate the area, bounded by the curve $x(t) = 3\cos(2t)$ and $y(t) = 3\sin(2t)$, 0

© TSSM 2023 Page 8 of 9

	2 marks
d.	The region bounded by the curve $x(t) = 3\cos(2t)$ and $y(t) = 3\sin(2t)$, $0 \le t \le \frac{\pi}{4}$, the lines $x = 0$, $y = 0$ and $x = 1$ is rotated about the x-axis.
	Calculate the volume of this region.
	2 marks
е.	The curve $x(t) = 3\cos(2t)$ and $y(t) = 3\sin(2t)$, $0 \le t \le \frac{\pi}{4}$, from $x = 0$ to $x = 1$ is rotated about the x-axis. Find the area of the surface of revolution in exact form.

3 marks

END OF KEY TOPIC TEST

© TSSM 2023 Page 9 of 9