SPECIALIST MATHEMATICS

Unit 1 Written examination 2

2023 Trial Examination

SOLUTIONS

Section A – Multiple Choice Questions

Question 1 Answer: **B**

Explanation: 2 is an even prime number.

Question 2 Answer: D

Explanation: $A \Leftrightarrow B$

Question 3 Answer: B

Explanation:

Since there are 366 different birth dates available, then any number greater than 366 must necessarily mean that at least one calander date is shared by 2 people. (n + 1 items to be allocated to n slots).

2023 SPECIALIST MATHEMATICS EXAM 2

Question 4

Answer: A

Explanation: $X = \{1, 2, 3, 4, 5\}, Y = \{2, 5, 6\}, Z = \{1, 7\}$ Sets *Y* and *Z* have no common elements. $Y \cap Z = \emptyset$

Question 5

Answer: D

Explanation:

A regular graph has $\frac{nr}{2}$ edges. $\frac{nr}{2} = \frac{12 \times 5}{2} = 30$

Question 6

Answer: **B**

Explanation: A complete graph has $\frac{n(n-1)}{2}$ edges. $\frac{n(n-1)}{2} = 45$ n(n-1) = 90n = 10

Question 7

Answer: C

Explanation:

 $1_2 = 1 = 2^1 - 1, 11_2 = 3 = 2^2 - 1, 111_2 = 7 = 2^3 - 1, 1111_2 = 15 = 2^4 - 1,$ 111 ... $11_2 = 2^n - 1$ where there are *n* 1's.

2023 SPECIALIST MATHEMATICS EXAM 2

Question 8

Answer: E

Explanation: De Morgan's law states that: $\neg (M \land N) = \neg M \lor \neg N$

Question 9

Answer: **B**

Explanation: $200 = 8 \times 25 = 2^3 \times 5^2$

Question 10

Answer: **D**

Explanation:

 $20 + 10 + 5 + 2.5 + \dots =$ Geometric series. a = 20, r = 0.5 $S_{\infty} = \frac{a}{1-r} = \frac{20}{0.5} = 40$

Question 11

Answer: **D**

Explanation: $P_{n+1} = 1.04P_n - 5000, P_0 = 200000$

Question 12

Answer: A

Explanation: $t_{n+1} = 3t_n + 1, t_1 = 4$ $n = 1, t_2 = 3t_1 + 1 = 12 + 1 = 13$ $n = 2, t_3 = 3t_2 + 1 = 39 + 1 = 40$ $n = 3, t_4 = 3t_3 + 1 = 120 + 1 = 121$

Question 13

Answer: **B**

Explanation: $7 + 11 + 15 + 19 + \dots t_n > 10^5$ Arithmetic series. a = 7, d = 4 $\frac{n}{2}(2a + (n - 1)d) > 10^5$ $\frac{n}{2}(14 + 4n - 4) > 10^5$ Use CAS.

Question 14 Answer: A

Explanation: If $a < 0, b \ge 0$ $\frac{a}{a-\sqrt{b}} = \frac{negative number}{negative number-positive number} = \frac{negative number}{negative number} = positive number$

Question 15

Answer: **D**

Explanation: In a connected graph, the number of edges is half the sum of all the vertex degrees.

Question 16

Answer: E

Explanation: $\binom{5}{3} \times \binom{4}{3} + \binom{5}{4} \times \binom{4}{2} + \binom{5}{5} \times \binom{4}{1}$ = 10 × 4 + 5 × 6 + 1 × 4 = 74

Question 17 Answer: **B**

Explanation: $\frac{10!}{2!2!} = 907200$

Question 18

Answer: E

Explanation:

Since matrix A is a 2×3 , it can be subtracted from a 2×3 matrix.

Question 19

Answer: C

Explanation:

Use CAS. $B^{2} = \begin{bmatrix} 3 & 6 & -3 \\ -1 & -2 & -1 \\ -1 & 4 & -1 \end{bmatrix} = -\begin{bmatrix} -3 & -6 & 3 \\ 1 & 2 & 1 \\ 1 & -4 & 1 \end{bmatrix}$

Question 20

Answer: D

Explanation:

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} \times \begin{bmatrix} e \\ f \end{bmatrix}$$

Section B – Extended Response Questions

Question 1 (9 marks)

a.	3, 9, 27, 81	2 marks
b.	$y \in Q$ That is, y is a rational number.	1 mark
C.	$x = 1, 3^1 = 3$ which is odd. Let 3^k be an odd number, where $k \in N$ So, $3^k = 2n + 1$, where $n \in N$ Now, $3^{k+1} = 3 \times 3^k$, where $k \in N$ $= 3 \times (2n + 1)$ = 6n + 3 $= 2 \times (3n + 1) + 1$ This one greater than the even number $2 \times (3n + 1)$ so it must be odd. So, 3^{k+1} where $k \in N$ is an odd number. So all numbers of the form $3^x, x \in N$ are odd.	
		4 marks

d. Now, $9^x = 3^{2x} = 3^x \times 3^x$ Since 3^x is an odd number (proved in **part c.**) $9^x = (2n + 1)^2 = 4n^2 + 4n + 1, n \in N$ $4n^2 + 4n + 1 = 2(2n^2 + 2n) + 1$ This one greater than the even number $2(2n^2 + 2n)$ so it must be odd. So, 9^x where $x \in N$ is an odd number.

2 marks

Question 2 (8 marks)

a.	8! = 40320	1 mark
b.	$2! \times 2! \times 2! \times 2! \times 4! = 192$	
		2 marks
c.	(8-1)! = 5040	
		1 mark

2 marks

Question 3 (9 marks)

a.
$$A_{n+1} = 1.05A_n + 3000, A_0 = 50000, n \ge 0$$

 $a = 1.05, b = 3000, c = 50000$

3 marks

b.

$$A_{n+1} = aA_n + b, A_0 = c, n \ge 0$$

$$A_{n+1} = 1.05^n \times 50000 + \frac{3000(1.05^n - 1)}{0.05} = 1.05^n \times 50000 + 60000(1.05^n - 1)$$

 $A_{20} = 1.05^{20} \times 50000 + 60000 (1.05^{20} - 1) \approx \231863

3 marks

c.
$$A_0 = \$50000$$

 $n = 0, A_1 = 1.05A_0 + 3000 = 1.05 \times 50000 + 3000 = \55500
 $n = 1, A_2 = 1.05A_1 + 3000 = 1.05 \times 55500 + 3000 = \61275
 $n = 2, A_3 = 1.05A_2 + 3000 = 1.05 \times 61275 + 3000 = \67338.75

 $A_{x+1} = 1.03 A_x$, $A_3 = 67338.75, x \geq 3$

3 marks

Question 4 (10 marks)

a.
$$v + f - e = 2$$

 $5 + 4 - 7 = 2$
1 mark

b. MST = 33 + 35 + 28 + 30 = 126

It will take at least 126 minutes to clear 4 roads so that the 5 towns are connected.

2 marks

c.

$$A = \begin{bmatrix} 0 & 2 & 1 & 0 & 0 \\ 2 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

2 marks

		г5	1	2	3	ך 0	l
		1	6	2	1	1	
d.	$A^{2} =$	2	3	2	1	1	
		2	0	1	2	0	
		LO	1	0	0	1	

There are 5 ways to go from A to A via 2 edges. There is 1 way to go from A to B via 2 edges. And so forth.

e. Three possibilities.

Question 5 (7 marks)

a.

 $|M|+|S|-|M\cap S|=|M\cup S|$

 $14 + 10 - |M \cap S| = 20 - 2$

 $|M \cap S| = 24 - 18 = 6$

2 marks

2 marks

b.

$$|M| + |S| + |B| - |M \cap S| - |M \cap B| - |S \cap B| - |M \cap S| + |M \cap S \cap B| = |M \cup S \cup B|$$

14 + 10 + 9 - 6 - 5 - |S \circ B| + 2 = 20 - 1
|S \circ B| = 24 - 19 = 5
2 marks

c.
$$\binom{20}{5} = 15504$$

1 mark
d. $\binom{10}{0} \times \binom{4}{3} \times \binom{6}{1} + \binom{10}{0} \times \binom{4}{4} \times \binom{6}{0} = 24 + 1 = 25$

Question 6 (8 marks)

a.

$$C = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}, \ C^{-1} = \frac{1}{5} \begin{bmatrix} 4 & -3 \\ -1 & 2 \end{bmatrix}$$
2 marks

b.

$$AC - BC = D$$

$$BC = AC - D$$

$$BCC^{-1} = (AC - D)C^{-1}$$

$$B = (AC - D)C^{-1}$$

$$B = ACC^{-1} - DC^{-1}$$

$$B = A - DC^{-1}$$

2 marks

c.

All four matrices have 2 columns.

1 mark

$$B = A - DC^{-1}$$

$$B = \begin{bmatrix} 1 & 2 \\ -2 & 1 \\ 0 & 3 \end{bmatrix} - 3 \times \begin{bmatrix} 1 & 2 \\ -2 & 1 \\ 0 & 3 \end{bmatrix} \times \frac{1}{5} \begin{bmatrix} 4 & -3 \\ -1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 \\ -2 & 1 \\ 0 & 3 \end{bmatrix} - \frac{3}{5} \begin{bmatrix} 2 & 1 \\ -9 & 8 \\ -3 & 6 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 \\ -2 & 1 \\ 0 & 3 \end{bmatrix} - \frac{3}{5} \begin{bmatrix} 2 & 1 \\ -9 & 8 \\ -3 & 6 \end{bmatrix}$$

$$= \frac{1}{5} \begin{bmatrix} -1 & 7 \\ 17 & -19 \\ 9 & -3 \end{bmatrix}$$

Question 7 (6 marks)

a.

$$A = X \wedge Y', B = (X \wedge Y) \vee (X' \wedge Z), C = X' \wedge Z'$$

3 marks

b.

Х	Y	Ζ	A	В	С
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	0	0
1	1	0	0	1	0
1	1	1	0	1	0

 $A \lor B \lor C = 1$ One of the 3 outcomes will be true.

3 marks

Question 8 (3 marks)

More than one correct set of steps. Coding needs to reject either a or r being zero.

input a, r $sum \leftarrow 0$ if $a \times r = 0$ then print 'INVALID NUMBER(S)' for i from 0 to 5 $sum \leftarrow sum + a \times r^i$ end for print sum