The Mathematical Association of Victoria

Trial Examination 2024 SPECIALIST MATHEMATICS

Written Examination 2 - SOLUTIONS

SECTION A: Multiple Choice

Question	Answer	Question	Answer
1	B	11	Α
2	B	12	В
3	С	13	С
4	D	14	В
5	B	15	Α
6	B	16	В
7	Α	17	В
8	D	18	D
9	B	19	Α
10	D	20	A

Question 1 Answer B $2xy - y^2 = -3$, x = 1 for y > 0 gives (1,3) gradient to the curve $=\frac{3}{2}$

Question 2 Answer B

 $y = \frac{ax^3}{x^2 + bx - 2}$

two vertical asymptotes at x = 1 and x = -2, oblique asymptote at y = 3x - 3.

Possible graph:
$$y = 3x - 3 + \frac{ax + c}{(x+2)(x-1)} = 3x - 3 + \frac{ax + c}{x^2 + x - 2}$$
 where *c* is a real constant.
Gives possible values $a = 3, b = 1$

Gives possible values a = 3, b = 1

Question 3 Answer C

$$y = a \operatorname{cosec}\left(\frac{\pi}{2}x + \pi\right) = \frac{a}{\sin\left(\frac{\pi}{2}x + \pi\right)}$$

Pariod = $\frac{2\pi}{a} = 4$

Period $=\frac{2\pi}{\frac{\pi}{2}}=4$

So for cosec graph, asymptotes will be 2 units apart.

In the interval -3 < x < 3Asymptotes at x = -2, x = 0, x = 2

2

Question 4 Answer D
Let
$$z = x + yi$$

 $\therefore \frac{z\overline{z}}{|z|} = \frac{(x + yi)(x - yi)}{|(x + yi)|} = \sqrt{13}$
 $\frac{x^2 + y^2}{\sqrt{x^2 + y^2}} = \sqrt{13}$
gives $\sqrt{x^2 + y^2} = \sqrt{13}$
 $x^2 + y^2 = 13$
Possible $z = 2^2 + 3^2$ gives $z = 2 + 3i$
 $iz = i2 + 3i^2 = -3 + 2i$

Question 5 Answer B

$$x(t) = (t+1)^{3} \text{ and } y(t) = \frac{2}{t+1} \text{ where } t \ge 0.$$

$$x'(t) = 3(t+1)^{2}$$

$$y'(t) = \frac{-2}{(t+1)^{2}}$$

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$$

$$\frac{dy}{dx} = \frac{-2}{(t+1)^{2}} \times \frac{1}{3(t+1)^{2}} = \frac{-2}{3(t+1)^{4}}$$
Gradient of tangent at $t = 1$ is $\frac{-2}{3 \times 16} = -\frac{1}{24}$

perpendicular to the tangent at t = 1, gradient = 24

$$\frac{\frac{d}{dt}(y(t))}{\frac{d}{dt}(x(t))} | t=1 \qquad -\frac{1}{24} \qquad -\frac{1}{24}$$

Question 6 Answer B

The pseudocode ultimately is calculating $\sin^2(1^\circ) + \sin^2(2^\circ) + \sin^2(3^\circ) + \cdots + \sin^2(89^\circ)$ or $\sum_{t=1}^{89} \sin^2(t^\circ)$.

CAS can be used to calculate the answer.

Or otherwise note that $\sin^2 x + \cos^2 x = 1$ and $\sin^2 (90^\circ - n) = \cos^2(n)$.

This means $\sin^2 1^\circ + \sin^2 89^\circ = 1$ where there are 44 pairs in this algorithm. 44 + $\sin^2 45^\circ = 44.5$.

$$\sum_{t=1}^{89} \left((\sin(t^{\circ}))^2 \right) \qquad \qquad \frac{89}{2}$$

When convert the pseudocode into Python,

∢ 1.1 ▶	*Doc	RAD 📘 🗙	1.1	1.2	▶	*Doc	rad 📘 🗙
🛃 MAV2024.py		8/8	🔁 Py	thon	Shell		4/4
from math import a = 0 t = 1 while t < 90: a += sin(radian: t += 1 print(a)	* s(t)) ** 2		>>>#F >>>frc 44.5 >>>	≀unni ∙m M	ing MA IAV202	.V2024.py 24 import *	

Question 7

$$\int_{-1}^{2} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

$$= \int_{-1}^{2} \sqrt{\left(\frac{d}{dt}(2t)\right)^{2} + \left(\frac{d}{dt}\left((t-1) - (1-2t)^{2}\right)\right)^{2}} dt$$

$$= \int_{-1}^{2} \sqrt{(2)^{2} + (5-8t)^{2}} dt$$

$$= 19.617 \approx 20$$

$$\int_{-1}^{2} \operatorname{norm}\left(\frac{d}{dt}\left(\begin{bmatrix} 2 \cdot t \\ t - 1 - (1 - 2 \cdot t)^{2}\end{bmatrix}\right)\right) dt$$
19.6175
$$v(t) := t - 1 - (1 - 2 \cdot t)^{2}$$
Done
$$\operatorname{arcLen}\left(v\left(\frac{t}{2}\right), t, -1 \cdot 2, 2 \cdot 2\right)$$
19.6175

Question 8

Answer D

$$a = v(1+v)^{2}$$

$$v \frac{dv}{dx} = v(1+v)^{2}$$

$$\frac{dv}{dx} = (1+v)^{2} \text{ where } v \neq 0$$

$$\frac{dx}{dv} = \frac{1}{(1+v)^{2}}$$

$$x = \int (1+v)^{-2} dv$$

$$x = -\frac{1}{1+v} + c$$
Given $x = 1, v = 1, 1 = -\frac{1}{1+1} + c \Rightarrow c = \frac{3}{2}$

$$x = -\frac{1}{1+v} + \frac{3}{2}$$
At $v = 10, x = -\frac{1}{1+10} + \frac{3}{2}$
At $v = 10, x = \frac{31}{22}$ metres
$$deSolve(v \cdot v' = v \cdot (1+v)^{2} \text{ and } v(1) = 1, x, v)$$

$$v = \frac{-2}{2 \cdot x - 3} - 1$$

$$i = 10, x = \frac{31}{22}$$

$$v = 10, x = \frac{31}{22} = 10$$

$$v = \frac{31}{22} = 10$$

$$v = \frac{31}{22}$$

Question 9 Answer B $\underline{a} = m\underline{i} + 4\underline{j} + 5\underline{k}$, $\underline{b} = -\underline{i} - n\underline{j}$ and $\underline{c} = 2\underline{i} + p\underline{k}$ For linearly **dependent**, allow $\underline{a} = E\underline{b} + F\underline{c}$ where E, F are real constants $m\underline{i} + 4\underline{j} + 5\underline{k} = E\left(-\underline{i} - n\underline{j} + 0\underline{k}\right) + F\left(2\underline{i} + 0\underline{j} + p\underline{k}\right)$

	i ~	j ~	k <u>̃</u>
å	m	4	5
ķ	-E	-En	0E
C ~	2F	0F	pF

For $\underline{a} = E\underline{b} + F\underline{c}$ we get the following equations

$$\begin{cases} m = -E + 2F \\ 4 = -En + 0F \\ 5 = 0E + pF \end{cases}$$

r

$$\begin{cases} m = -E + 2F \\ 4 = -En \Longrightarrow E = -\frac{4}{n} \\ 5 = pF \Longrightarrow F = \frac{5}{p} \end{cases}$$

Giving
$$m = -\left(-\frac{4}{n}\right) + 2\left(\frac{5}{p}\right)$$

 $m = \left(\frac{4}{n}\right) + 2\left(\frac{5}{p}\right)$
 $\therefore m = \frac{4}{n} + \frac{10}{p}$
 $solve\left(det\left(\begin{bmatrix} m & -1 & 2\\ 4 & -n & 0\\ 5 & 0 & p \end{bmatrix}\right) = 0, m\right)$
 $m = \frac{2 \cdot (5 \cdot n + 2 \cdot p)}{n \cdot p}$
 $m = \frac{4}{n} + \frac{10}{p}$

Question 10 Answer D

$$\dot{r}(t) = \sin(t)\cos(t)\dot{i} + \cos(2t)\dot{j}$$

$$r(t) = \int \left(\sin(t)\cos(t)\dot{i} + \cos(2t)\dot{j}\right)dt$$

$$r(t) = \int \left(\frac{1}{2}\sin(2t)\dot{i} + \cos(2t)\dot{j}\right)dt$$

$$\therefore r(t) = -\frac{1}{4}\cos(2t)\dot{i} + \frac{1}{2}\sin(2t) + c$$

Given $r(\pi) = 2i - 3j$

$$2i - 3j = -\frac{1}{4}\cos(2\pi)i + \frac{1}{2}\sin(2\pi) + c$$

$$c = \frac{1}{4}\cos(2\pi)i - \frac{1}{2}\sin(2\pi) + 2i - 3j$$

$$c = \frac{1}{4}i + 2i - 3j = \frac{9}{4}i - 3j$$
Gives
$$r(t) = -\frac{1}{4}\cos(2t)i + \frac{1}{2}\sin(2t) + \frac{9}{4}i - 3j$$

displacement of the body at time t, r(t) is given by

$$\underline{r}(t) = \left(-\frac{1}{4}\cos(2t) + \frac{9}{4}\right)\underline{i} + \left(\frac{1}{2}\sin(2t) - 3\right)\underline{j}$$
$$\int_{\pi}^{t} \left[\frac{\sin(t)\cdot\cos(t)}{\cos(2\cdot t)}\right] dt + \begin{bmatrix}2\\-3\end{bmatrix} \quad \left[\frac{9}{4} - \frac{\cos(2\cdot t)}{4}\right]$$
$$\frac{\sin(2\cdot t)}{2} - 3$$

Question 11 Answer A $\frac{dP}{dt} = P\left(6 - \frac{P}{8000}\right) \text{ with initial population, } P, \text{ of 4000 bacteria.}$ Solution to DE is $P = \frac{48000(-\frac{1}{11})e^{6t}}{-\frac{1}{11}e^{6t}-1}$

Giving horizontal asymptote P = 48000

propFrac(
$$\frac{48000 \cdot (-\frac{1}{11}) \cdot e^{6 \cdot x}}{-\frac{1}{11} \cdot e^{6 \cdot x} - 1}$$
)
 $\frac{48000 \cdot e^{6 \cdot x}}{e^{6 \cdot x} + 11}$

© The Mathematical Association of Victoria, 2024

Question 12 Answer B

Option A is incorrect as 3 is rational but $\sqrt{3}$ is not; Option C is incorrect as if x = 0 and $y = \sqrt{3}$ gives xy = 0 where it is rational; Option D is incorrect as 0 is even and 0(0+1) is also even.

Proof of Option B: If an integer n is odd then $n^2 + 2$ is odd. Proof: Let $n = 2\ell + 1$ where $\ell \in \mathbb{Z}$. $n^2 + 2 = (2\ell + 1)^2 + 2$ $=4\ell^2+1+2\times 2\ell+2$ $= 2(2\ell^2 + 2\ell + 1) + 1$ Thus $n^2 + 2$ is odd.

If $n^2 + 2$ is odd then n is odd where n is an integer. Proof:

We proceed by proving the contrapositive is true. The contrapositive of the above statement is If n is even, then $n^2 + 2$ is even where n is an integer. Let $n = 2\ell$ where $\ell \in Z$.

Let
$$n = 2\ell$$
 where $\ell \in n^2 + 2 = (2\ell)^2 + 2$
= $4\ell^2 + 2$
= $2(2\ell^2 + 1)$

Thus $n^2 + 2$ is even.

Therefore, if $n^2 + 2$ is odd then *n* is odd where *n* is an integer.

Question 13 Answer C

$$A = |\underline{a} \times \underline{c}|$$

= $|\underline{a} \times (\sqrt{3}\underline{a} + \sqrt{2}\underline{b})|$
= $|\underline{a} \times \sqrt{3}\underline{a} + \underline{a} \times \sqrt{2}\underline{b}|$
= $|\sqrt{3}\underline{a} \times \underline{a} + \sqrt{2}\underline{a} \times \underline{b}|$
= $|\sqrt{3} \times 0 + \sqrt{2}\underline{a} \times \underline{b}|$
= $\sqrt{2} ||\underline{a}| \cdot |\underline{b}| \cdot \sin(\theta) \cdot \underline{\hat{n}}|$

From $\underline{a} \cdot \underline{b} = 3$, we know that $|\underline{a}| \cdot |\underline{b}| \cdot \cos(\theta) = 3 \Rightarrow |\underline{a}| \cdot |\underline{b}| = \frac{3}{\cos(\theta)}$.

$$A = |\underline{a} \times \underline{c}| = \sqrt{2} ||\underline{a}| \cdot |\underline{b}| \cdot \sin(\theta)|$$
$$= \sqrt{2} \times \left|\frac{3}{\cos(\theta)} \times \sin(\theta)\right|$$
$$= \sqrt{2} \times |3 \times \tan(\theta)|$$
$$= \sqrt{2} \times \left|3 \times \frac{1}{3}\right|$$
$$= \sqrt{2}$$

Question 14

Answer B

$$b \times (a + b + c) = b \times 0$$

$$b \times a + b \times b + b \times c = 0$$

$$-a \times b + 0 + b \times c = 0$$

$$a \times b = b \times c$$

Question 15 Answer A $a(t) = e^{-2t} \Longrightarrow t = \frac{-1}{2} \log_e a$ $v(t) = -\frac{1}{2}e^{-2t} + 3$ and $x(t) = \frac{1}{4}e^{-2t} + 3t + 4$

© The Mathematical Association of Victoria, 2024

$$\sum_{i=1}^{n} v = \frac{-1}{2} \cdot e^{-2 \cdot t} + 3|t = \frac{-\ln(a)}{2}$$
 $v = 3 - \frac{a}{2}$

Question 16 Answer B

If two planes are perpendicular to each other then $a_1a_2 + b_1b_2 + c_1c_2 = 0$. $2 \times 1 + 2 \times 1 + \lambda \times 1 = 0 \implies \lambda = -4$

Question 17 Answer B

$$A_{x} = 2 \cdot \pi \cdot \int_{0}^{a} \left(\frac{x}{5} \cdot \sqrt{1 + \left(\frac{d}{dx} \left(\frac{x}{5}\right)\right)^{2}} \right) dx = \frac{a^{2} \cdot \pi \cdot \sqrt{26}}{25}$$

$$A_{y} = 2 \cdot \pi \cdot \int_{0}^{a/5} \left(5 \cdot y \cdot \sqrt{1 + \left(\frac{d}{dy} (5 \cdot y)\right)^{2}} \right) dy = \frac{a^{2} \pi \sqrt{26}}{5}$$

Question 18 Answer D

Fourth quadrant means x value is positive and y value is negative.

Therefore $\frac{y}{x^2}$ is negative and -3 will make it more negative.

Question 19 Answer A $X - Y \sim N(0, 2\sigma^2)$ $P(-1 < X - Y < 1) = P\left(\frac{-1}{\sqrt{2}\sigma} < \frac{X - Y}{\sqrt{2}\sigma} < \frac{1}{\sqrt{2}\sigma}\right)$

Therefore, the probability is independent from μ but dependent on σ .

Question 20 Answer A

```
zInterval √2,15,36,0.99: stat.results

["Title" "z Interval"

"CLower" 14.3929

"CUpper" 15.6071

"\bar{x}" 15.

"ME" 0.607129

"n" 36.

"σ" 1.41421
```


END OF MULTIPLE CHOICE SOLUTIONS

SECTION B

Question 1 (10 marks) $f(x) = \frac{ax^2 + 1}{x^2 - 3x + 2} \text{ where } a \in R \setminus \{0\}.$

a.
$$f(x) = \frac{ax^2 + 1}{x^2 - 3x + 2} = \frac{ax^2 + 1}{(x - 1)(x - 2)}$$

Equations of the vertical asymptotes. x = 1, x = 2Equation of the horizontal asymptote. y = a

b Edit Action Interactive

$$\frac{\mathbf{a} \cdot \mathbf{x}^{2}}{\mathbf{x}^{2} \cdot \mathbf{y}} = \frac{\mathbf{a} \cdot \mathbf{x}^{2} + 1}{\mathbf{x}^{2} - 3 \cdot \mathbf{x} + 2} = \frac{2 \cdot \mathbf{a}}{\mathbf{x}^{2} - 3 \cdot \mathbf{x} + 2} + \frac{1}{\mathbf{x}^{2} - 3 \cdot \mathbf{x} + 2}$$

$$\frac{\mathbf{a} + \frac{3 \cdot \mathbf{a} \cdot \mathbf{x}}{\mathbf{x}^{2} - 3 \cdot \mathbf{x} + 2} - \frac{2 \cdot \mathbf{a}}{\mathbf{x}^{2} - 3 \cdot \mathbf{x} + 2} + \frac{1}{\mathbf{x}^{2} - 3 \cdot \mathbf{x} + 2}$$

$$\frac{\mathbf{a} + \frac{3 \cdot \mathbf{a} \cdot \mathbf{x}}{\mathbf{x}^{2} - 3 \cdot \mathbf{x} + 2} - \frac{2 \cdot \mathbf{a}}{\mathbf{x}^{2} - 3 \cdot \mathbf{x} + 2} + \frac{1}{\mathbf{x}^{2} - 3 \cdot \mathbf{x} + 2}$$

$$\frac{\mathbf{b} \cdot \mathbf{b} \cdot \mathbf{b} = \mathbf{a} - \mathbf{a} \cdot \mathbf{a} + \frac{1}{\mathbf{x}^{2} - 3 \cdot \mathbf{x} + 2}$$

$$\frac{\mathbf{b} \cdot \mathbf{b} \cdot \mathbf{b} \cdot \mathbf{c} = \mathbf{a} - \mathbf{b} \cdot \mathbf{c} + \mathbf{a} = 1. \text{ Local maximum stationary point } \left(\frac{1 + \sqrt{10}}{3}, -2\sqrt{10} - 6\right)$$

$$\frac{\mathbf{a} \cdot \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{a} - \mathbf{c} \cdot \mathbf$$

1A

1A

© The Mathematical Association of Victoria, 2024

Real

 $\left\{x = \frac{-\sqrt{10}}{3} + \frac{1}{3}, x = \frac{\sqrt{10}}{3} + \frac{1}{3}\right\}$

 $-2 \cdot \sqrt{10} - 6$

Rad

(111)

simplify (f ($\frac{\sqrt{10}}{3}$ + $\frac{1}{3}$) | α =1

Standard

0 Alg

c. Let a = 1.

1A

d. i. Stationary points

$$x = \frac{2a - 1 \pm \sqrt{4a^2 + 5a + 1}}{3a}$$

$$x = \frac{2a - 1 \pm \sqrt{4a^2 + 5a + 1}}{3a}$$

$$x = \frac{2a - 1 \pm \sqrt{4a^2 + 5a + 1}}{3a}$$

$$x = \frac{2a - 1 \pm \sqrt{4a^2 + 5a + 1}}{3a}$$

$$x = \frac{2a - 1 \pm \sqrt{4a^2 + 5a + 1}}{3a}$$

ii. Two stationary points for $4a^2 + 5a + 1 > 0$

$$a \in (-\infty, -1) \cup \left(-\frac{1}{4}, \infty\right)$$
 1A

$\ensuremath{\mathbb{C}}$ The Mathematical Association of Victoria, 2024

solve
$$(4 \cdot a^2 + 5 \cdot a + 1 > 0, a)$$
 $a < -1 \text{ or } a > \frac{-1}{4}$

h(x) = x and g(x) = |f(x)| where a = 1.

e. h and g intersect once at x = 3.5115...solve(|f(x)|=x|a=1, x) {x=3.511547142}

Define
$$h(x)=x$$
DoneDefine $g(x)=|f(x)||a=1$ Donecount(zeros($h(x)-g(x),x)$)1solve($h(x)=g(x),x$)x=3.51155

f. The region bounded by the curves of h and g and the line x = 5 is rotated around the x-axis.

$$Vol = \pi \int_{3.5115...}^{5} (x^2 - (f(x)^2)dx)$$
$$Vol = \pi \int_{3.5115...}^{5} (x^2 - \left(\frac{x^2 + 1}{x^2 - 3x + 2}\right)^2)dx$$
 1M

Volume= 51.38 cubic units, to two decimal places 1A

© The Mathematical Association of Victoria, 2024

1A

Question 2 (10 marks)

$$\frac{dx}{dt} = 2\operatorname{cosec}(x)\sin^2(2t) \text{ where } x = \pi \text{ when } t = \frac{\pi}{4}, t \ge 0$$

a. Use
$$\sin^2(2t) = \frac{1}{2}(1 - \cos(4t))$$

i. $\frac{dx}{dt} = 2\csc(x)\sin^2(2t)$
 $\frac{dx}{dt} = 2\csc(x)\left(\frac{1}{2}(1 - \cos(4t))\right)$
 $\int \frac{1}{2\csc(x)}dx = \int \left(\frac{1}{2}(1 - \cos(4t))\right)dt$
 $\int \frac{\sin(x)}{2}dx = \frac{1}{2}\int (1 - \cos(4t))dt$
 $\int \sin(x)dx = \int (1 - \cos(4t))dt$ of the required form $\int f(x)dx = \int g(t)dt$ 1A

ii. Solve in the form
$$x = \cos^{-1}(at + b\sin(4t) + c)$$

$$\int \sin(x)dx = \int (1 - \cos(4t))dt$$

$$-\cos(x) = t - \frac{1}{4}\sin(4t) + c$$

$$\cos(x) = -t + \frac{1}{4}\sin(4t) + c$$

$$\cos(\pi) = -\frac{\pi}{4} + \frac{1}{4}\sin(4\frac{\pi}{4}) + c$$

$$-1 = -\frac{\pi}{4} + c \therefore c = -1 + \frac{\pi}{4}$$

$$x = \cos^{-1}\left(-t + \frac{1}{4}\sin(4t) - 1 + \frac{\pi}{4}\right)$$
1A

iii.

© The Mathematical Association of Victoria, 2024

3A 1 shape, 2 endpoints

Question 3 (11 marks)

a. Use appropriate trigonometric formulas to show that $\operatorname{cis}\left(\frac{5\pi}{12}\right)$ can be expressed in the form A + Bi, where $A, B \in R$ as $\operatorname{cis}\left(\frac{5\pi}{12}\right) = \frac{\sqrt{6} - \sqrt{2}}{4} + \frac{\sqrt{6} + \sqrt{2}}{4}i$.

$$\operatorname{cis}\left(\frac{5\pi}{12}\right) = \operatorname{cis}\left(\frac{2\pi}{12} + \frac{5\pi}{12}\right) = \operatorname{cis}\left(\frac{\pi}{6} + \frac{\pi}{4}\right)$$
$$\operatorname{cis}\left(\frac{\pi}{6} + \frac{\pi}{4}\right) = \operatorname{cos}\left(\frac{\pi}{6} + \frac{\pi}{4}\right) + i\operatorname{sin}\left(\frac{\pi}{6} + \frac{\pi}{4}\right)$$

Taking Real components

$$\cos\left(\frac{\pi}{6} + \frac{\pi}{4}\right) = \cos\left(\frac{\pi}{6}\right)\cos\left(\frac{\pi}{4}\right) - \sin\left(\frac{\pi}{6}\right)\sin\left(\frac{\pi}{4}\right)$$
$$\therefore \cos\left(\frac{5\pi}{12}\right) = \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} - \frac{1}{2} \times \frac{\sqrt{2}}{2} = \frac{\sqrt{6} - \sqrt{2}}{4}$$

and taking Imaginary components

$$i\sin\left(\frac{\pi}{6} + \frac{\pi}{4}\right) = i\sin\left(\frac{\pi}{6}\right)\cos\left(\frac{\pi}{4}\right) + i\cos\left(\frac{\pi}{6}\right)\sin\left(\frac{\pi}{4}\right)$$
 1M

$$\therefore i \sin\left(\frac{5\pi}{12}\right) = i \frac{1}{2} \times \frac{\sqrt{2}}{2} + i \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} = \frac{\sqrt{2} + \sqrt{6}}{4}i$$

Giving
$$\operatorname{cis}\left(\frac{5\pi}{12}\right) = \frac{\sqrt{6} - \sqrt{2}}{4} + \frac{\sqrt{6} + \sqrt{2}}{4}i \text{ where } A = \frac{\sqrt{6} - \sqrt{2}}{4}, B = \frac{\sqrt{6} + \sqrt{2}}{4}$$
 1M

© The Mathematical Association of Victoria, 2024

$$\begin{aligned} \mathbf{b.} \quad & \text{Express} \left\{ z : \left| z - 3 \operatorname{cis} \left(\frac{5\pi}{12} \right) \right| = \left| z + 3 \operatorname{cis} \left(\frac{5\pi}{12} \right) \right|, z \in C \right\} \text{ in the form } y = ax + b \text{ , where } a, b \in R \text{ .} \\ & \left\{ z : \left| z - 3 \operatorname{cis} \left(\frac{5\pi}{12} \right) \right| = \left| z + 3 \operatorname{cis} \left(\frac{5\pi}{12} \right) \right|, z \in C \right\} \text{ From part a).} \\ & \text{Let } 3 \operatorname{cis} \left(\frac{5\pi}{12} \right) = \operatorname{cis} \left(\frac{5\pi}{12} \right) = \frac{3\sqrt{6} - 3\sqrt{2}}{4} + i \frac{3\sqrt{6} + 3\sqrt{2}}{4} \text{ IM} \end{aligned}$$

$$\begin{aligned} & \text{So } \left\{ z : \left| z - 3 \operatorname{cis} \left(\frac{5\pi}{12} \right) \right| = \left| z + 3 \operatorname{cis} \left(\frac{5\pi}{12} \right) \right|, z \in C \right\} \\ & \left| z - \left(\frac{3\sqrt{6} - 3\sqrt{2}}{4} + i \frac{3\sqrt{6} + 3\sqrt{2}}{4} \right) \right| = \left| z + \frac{3\sqrt{6} - 3\sqrt{2}}{4} + i \frac{3\sqrt{6} + 3\sqrt{2}}{4} \right| \\ & \text{Let } z = x + iy \\ & \left| x + iy - \left(\frac{3\sqrt{6} - 3\sqrt{2}}{4} + i \frac{3\sqrt{6} + 3\sqrt{2}}{4} \right) \right| = \left| x + iy + \frac{3\sqrt{6} - 3\sqrt{2}}{4} + i \frac{3\sqrt{6} + 3\sqrt{2}}{4} \right| \\ & \sqrt{\left(x - \frac{3\sqrt{6} - 3\sqrt{2}}{4} \right)^2} + \left(y - \frac{3\sqrt{6} + 3\sqrt{2}}{4} \right)^2 = \sqrt{\left(x + \frac{3\sqrt{6} - 3\sqrt{2}}{4} \right)^2 + \left(y + \frac{3\sqrt{6} + 3\sqrt{2}}{4} \right)^2 } \\ & \left(x - \frac{3\sqrt{6} - 3\sqrt{2}}{4} \right)^2 + \left(y - \frac{3\sqrt{6} + 3\sqrt{2}}{4} \right)^2 = \left(x + \frac{3\sqrt{6} - 3\sqrt{2}}{4} \right)^2 + \left(y + \frac{3\sqrt{6} + 3\sqrt{2}}{4} \right)^2 \right)^2 \text{ IM } \\ & \text{Giving} \\ & y = -x \left(\frac{3 - \sqrt{3}}{3 + \sqrt{3}} \right) \end{aligned}$$

In rationalised form

$$y = \left(\sqrt{3} - 2\right)x \qquad 1A$$

Define $cis(t) = cos(t) + i \cdot sin(t)$	Done
$\left z-3\cdot cis\left(\frac{5\cdot\pi}{12}\right)\right = \left z+3\cdot cis\left(\frac{5\cdot\pi}{12}\right)\right = z+y-z $	i
$\sqrt{2 \cdot (2 \cdot x^2 - 3 \cdot (\sqrt{3} - 1) \cdot \sqrt{2} \cdot x + 2 \cdot y^2 - 3)}$	\$• (√3 +
2	
$\operatorname{solve}\left(\sqrt{2\cdot\left(2\cdot x^2-3\cdot\left(\sqrt{3}-1\right)\cdot\sqrt{2}\cdot x+2\cdot\right)}\right)$	$y^2 - 3$
$\frac{2}{\gamma = (\sqrt{3})}$	$(-2) \cdot x$

c. Sketch the graph of $\left\{z: \left|z-3\operatorname{cis}\left(\frac{5\pi}{12}\right)\right| = \left|z+3\operatorname{cis}\left(\frac{5\pi}{12}\right)\right|, z \in C\right\}$ in the form y = ax+b, where $a, b \in R$, 1 mark

d. On the Argand diagram below sketch and label $A = \left\{ z : z \ \overline{z} = 4, z \in C \right\}$ and $B = \left\{ z : \left| z - 3 \operatorname{cis}\left(\frac{5\pi}{12}\right) \right| = \left| z + 3 \operatorname{cis}\left(\frac{5\pi}{12}\right) \right|, z \in C \right\}.$

ii Intersection points on graph above

$$\left\{z: z \ \overline{z} \le 4, z \in C\right\} \cap \left\{z: \left|z - 3\operatorname{cis}\left(\frac{5\pi}{12}\right)\right| \le \left|z + 3\operatorname{cis}\left(\frac{5\pi}{12}\right)\right|, z \in C\right\}$$

Intersection between line $y = (\sqrt{3} - 2)x$ and circle $x^2 + y^2 = 4$

$$x = \frac{2}{\sqrt{6} - \sqrt{2}}, y = \frac{-(\sqrt{6} - \sqrt{2})}{2}$$

$$x = \frac{-2}{\sqrt{6} - \sqrt{2}}, y = \frac{\sqrt{6} - \sqrt{2}}{2}$$

$$z \cdot \operatorname{conj}(z) = 4|z = x + y \cdot i \qquad x^2 + y^2 = 4$$

$$\operatorname{solve}\left(x^2 + y^2 = 4 \text{ and } \frac{\sqrt{2} \cdot (2 \cdot x^2 - 3 \cdot (\sqrt{3} - 1) \cdot \sqrt{4})}{\sqrt{2} \cdot (2 \cdot x^2 - 3 \cdot (\sqrt{3} - 1) \cdot \sqrt{4})}\right)$$

$$y = (\sqrt{3} - 2) \cdot \sqrt{\sqrt{3} + 2} \text{ and } x = \sqrt{\sqrt{3} + 2} \text{ or } y = -(\sqrt{4})$$

$$y = (\sqrt{3} - 2) \cdot \sqrt{\sqrt{3} + 2} \text{ and } x = \sqrt{\sqrt{3} + 2} \text{ or } y = -(\sqrt{4})$$

$$x = \frac{-\sqrt{6}}{2} - \frac{\sqrt{2}}{2} \text{ and } y = \frac{(\sqrt{3} - 1) \cdot \sqrt{2}}{2} \text{ or } x = \frac{\sqrt{6}}{2}$$

© The Mathematical Association of Victoria, 2024

1A

f. Find the area of the shaded region in **part e**. Line goes through centre of circle radius of 2.

Area
$$=\frac{1}{2}\pi 2^2$$

 $=2\pi$ 1A

Question 4

a. Substituting x = 5, y = 0 and z = 1 into the plane equation gives $2x + 4y - 7z = 2 \times 5 + 4 \times 0 - 7 \times 1 = 3 \neq 5$ 1M

Therefore, P(5,0,1) does not lie on the plane.

1A

b. The vector perpendicular to the plane is given by the coefficients of x, y and z thus it could be 2i + 4j - 7k. **1A**

c. Let $\underline{n} = 2\underline{i} + 4\underline{j} - 7\underline{k}$ where \underline{n} is a normal vector to the plane. $|\underline{n}| = \sqrt{2^2 + 4^2 + (-7)^2} = \sqrt{69}$

Find any point P_0 that lies on the plane.

 $P_0(2,2,1)$ where P_0 is a point on the plane

$$\overrightarrow{OP_0} = 2\underline{i} + 2\underline{j} + \underline{k}$$

$$\overrightarrow{PP_0} = \overrightarrow{PO} + \overrightarrow{OP_0} = -(5\underline{i} + \underline{k}) + (2\underline{i} + 2\underline{j} + \underline{k}) = -3\underline{i} + 2\underline{j}$$

$$\underline{n} \cdot \overrightarrow{PP_0} = \left(2\underline{i} + 4\underline{j} - 7\underline{k}\right) \cdot (-3\underline{i} + 2\underline{k}) = 2 \qquad \mathbf{1M}$$

$$\underline{n} \cdot \overrightarrow{PP_0} = 1 \qquad 2 \quad 2\sqrt{69}$$

$$D = \frac{n! \cdot 1 \cdot 1_0}{|n|} = \frac{1}{\sqrt{69}} \times 2 = \frac{2}{\sqrt{69}} = \frac{2\sqrt{69}}{69}.$$

Therefore, the shortest distance from P(5,0,1) to Π_1 is $\frac{2}{\sqrt{69}}$ (or $\frac{2\sqrt{69}}{69}$). 1A

d.
$$\overrightarrow{AB} = (2\underline{i} - \underline{j} + 4\underline{k}) - (\alpha \underline{i} + \beta \underline{j} + \underline{k}) = (2 - \alpha)\underline{i} + (-1 - \beta)\underline{j} + 3\underline{k}$$

 $\overrightarrow{AC} = (5\underline{i} + \underline{j} + \underline{k}) - (\alpha \underline{i} + \beta \underline{j} + \underline{k}) = (5 - \alpha)\underline{i} + (1 - \beta)\underline{j}$ **1A**

e. Note that $\vec{r} \cdot (3\vec{i} + 6\vec{j} + 7\vec{k}) = 28 \equiv 3x + 6y + 7z = 28$ A normal vector to the plane is $\overrightarrow{AB} \times \overrightarrow{AC} = (3\beta - 3)\vec{i} + (15 - 3\alpha)\vec{j} + (-2\alpha + 3\beta + 7)\vec{k}$. 1M

Equating $3\underline{i} + 6\underline{j} + 7\underline{k} = (3\beta - 3)\underline{i} + (15 - 3\alpha)\underline{j} + (-2\alpha + 3\beta + 7)\underline{k}$ will find $\alpha = 3$ and $\beta = 2$.

Therefore, the coordinate of A is (3,2,1). **1A**

C Edit Action Interactive	X
$\stackrel{0.5}{\stackrel{1}{\rightarrowtail} 2} \qquad \qquad$	1
[α β 1] > a	
[αβ1]	
[2 −1 4] > b	
[2 -1 4]	
[5 1 1] ⇒ c	
[5 1 1]	
<pre>simplify(crossP(b-a, c-a))</pre>	
$[3\cdot\beta-3 - 3\cdot\alpha+15 - 2\cdot\alpha+3\cdot\beta+7]$	
∫3•β−3=3	
$ -3\cdot\alpha+15=6 _{\alpha,\beta}$	
$\{\alpha=3,\beta=2\}$	
	7
Alg Standard Real Rad (Ш

f. A normal to plane Π_1 is $\underline{n}_1 = 2\underline{i} + 4\underline{j} - 7\underline{k}$ and a normal to the plane Π_2 is $\underline{n}_2 = 3\underline{i} + 6\underline{j} + 7\underline{k}$. Let θ be the angle between the two planes.

$$\underline{n}_{1} \cdot \underline{n}_{2} = |\underline{n}_{1}| |\underline{n}_{2}| \cos(\theta)$$

$$-19 = \sqrt{69} \cdot \sqrt{94} \cdot \cos(\theta)$$

$$\cos(\theta) = \frac{-19}{\sqrt{69} \cdot \sqrt{94}}$$

$$\theta = 1.809 = 103.646^{\circ}$$
1M

The angle between n_1 and n_2 is $76.354^\circ = 76.35^\circ$.

Therefore, the acute angle between the two planes is 76.35° . **1A**

g. Solve
$$2x + 4y - 7z = 5$$
 and $3x + 6y + 7z = 28$
would have $x = -2y + \frac{33}{5}$ (or $y = -\frac{x}{2} + \frac{33}{10}$) and $z = \frac{41}{35}$.

© The Mathematical Association of Victoria, 2024

Let
$$y = t$$
. 1M

We would have $x = -2t + \frac{33}{5}$, y = t and $z = \frac{41}{35}$.

Therefore,
$$\ell = \left(\frac{33}{5}i + 0j + \frac{41}{35}k\right) + t\left(-2i + j + 0k\right)$$
. 1A

$$\lim \text{Solve}\left(\begin{cases} 2 \cdot x + 4 \cdot y - 7 \cdot z = 5 \\ 3 \cdot x + 6 \cdot y + 7 \cdot z = 28 \end{cases}, \{x, y, z\} \right) \\
 \left\{ \frac{-(10 \cdot cI - 33)}{5}, cI, \frac{41}{35} \right\} \\
 \text{expand}\left(\lim \text{Solve}\left(\begin{cases} 2 \cdot x + 4 \cdot y - 7 \cdot z = 5 \\ 3 \cdot x + 6 \cdot y + 7 \cdot z = 28 \end{cases}, \{x, y, z\} \right) \\
 \left\{ \frac{33}{5} - 2 \cdot c2, c2, \frac{41}{35} \right\} \\
 \end{array} \right)$$

OR

$$\underline{u} = \underline{n}_{1} \times \underline{n}_{2} = \left(2\underline{i} + 4\underline{j} - 7\underline{k}\right) \times \left(3\underline{i} + 6\underline{j} + 7\underline{k}\right) = 70\underline{i} - 35\underline{j} \qquad \mathbf{1M}$$

Let x = 0, $2 \times 0 + 4y - 7z = 5$ and $3 \times 0 + 6y + 7z = 28$.

Therefore, the line of intersection is

$$\begin{pmatrix} 0\underline{i} + \frac{33}{10}\underline{j} + \frac{41}{35}\underline{k} \\ + t\left(70\underline{i} - 35\underline{j} + 0\underline{k} \right) \\ = \left(0\underline{i} + \frac{33}{10}\underline{j} + \frac{41}{35}\underline{k} \\ + \left(\frac{33}{5} \div 70\right)\left(70\underline{i} - 35\underline{j} + 0\underline{k} \right) + \frac{1}{-35} \times t\left(70\underline{i} - 35\underline{j} + 0\underline{k} \right) \\ = \left(0\underline{i} + \frac{33}{10}\underline{j} + \frac{41}{35}\underline{k} \\ + \left(\frac{33}{350}\right)\left(70\underline{i} - 35\underline{j} + 0\underline{k} \right) + t\left(-2\underline{i} + 1\underline{j} + 0\underline{k} \right) \\ = \left(\frac{33}{5}\underline{i} + 0\underline{j} + \frac{41}{35}\underline{k} \\ + t\left(-2\underline{i} + 1\underline{j} + 0\underline{k} \right) \\ \end{cases}$$

Question 5

a. $\dot{r}_{2}(t) = 13\cos(t)\dot{t} - 5\sin(t)\dot{t} - 12\sin(t)\dot{t}$ **1.1** 2.1 3.1 MAV2024SM2 RAD \checkmark $rI(t) := \begin{bmatrix} 13 \cdot \sin(t) \\ 5 \cdot \cos(t) \\ 12 \cdot \cos(t) \end{bmatrix}$ Done $rrI(t) := \frac{d}{dt}(rI(t))$ Done $rrI(t) = \frac{d}{dt}(rI(t))$ Done $rrI(t) = \frac{d}{dt}(rI(t))$ Done $rrI(t) = \frac{d}{dt}(rI(t))$ Done

© The Mathematical Association of Victoria, 2024

b.

$$\begin{aligned} |\dot{r}_{1}(t)| &= \left| 13\cos(t)\underline{i} - 5\sin(t)\underline{j} - 12\sin(t)\underline{k} \right| \\ &= \sqrt{\left(13\cos(t)\right)^{2} + \left(-5\sin(t)\right)^{2} + \left(-12\sin(t)\right)^{2}} \\ &= \sqrt{13^{2}\cos^{2}(t) + 25\sin^{2}(t) + 144\sin^{2}(t)} \\ &= \sqrt{13^{2}\cos^{2}(t) + 169\sin^{2}(t)} \quad \mathbf{1A} \\ &= \sqrt{13^{2}\left(\cos^{2}(t) + \sin^{2}(t)\right)} \\ &= \sqrt{13^{2} \cdot 1} \\ &= 13 \end{aligned}$$

As the speed of this dragon is always 13 and is not dependent on time, thus the speed of this dragon is constant.

1A

c. The dragon passes through the xy plane when z = 0.

When
$$\cos\left(\frac{t}{2}\right)$$
, $t = \pi$. **1M**

$$\underline{r}_{2}(\pi) = \left(\frac{\pi^{2}}{16}, \log_{e} \pi, 0\right)$$
 1A

₹ 1.1	1.2 🕨	MAV24SM2Q5	RAD 📒	\times
zeros	(r2(t)[3],t) 0 <i>≤t</i> ≤18	$\{\pi,\!3\!\cdot\pi,\!5\!\cdot\pi\}$	
r2(t) t	=π		$\begin{bmatrix} \frac{\pi^2}{16} \\ \ln(\pi) \\ 0 \end{bmatrix}$	
r2(t) t	=3·π		$\left[\frac{9\cdot\pi^2}{16}\right]_{\ln(3\cdot\pi)}$	•

d. $D(t) = |r_2(t) - r_1(t)|$ **1M**

$$= \begin{cases} 256\cos^2\left(\frac{t}{2}\right) - 6144\cos\left(t\right)\cos\left(\frac{t}{2}\right) \\ -1280\left(\log_e\left(t\right) - \log_e\left(\frac{1}{t}\right)\right)\cos(t) \\ +416t^2\sin\left(t\right) - 256\log_e\left(\frac{1}{t}\right)\log_e\left(t\right) \\ +t^4 + 43264 \end{cases}$$
 $\div 16$ (students are not expected to copy this)

$$D(t)$$
 is minimum when $t = 14.002718648011 \approx 14.003$. 1A

Thus the minimum distance is $D(14.0027...) = 2.2368024196637 \approx 2.237$ 1A

e.
$$\dot{r}_{2}(t) = (-2\sin(t)\cos(t) - 6\sin(t))\dot{t} + (-2\cos^{2}(t) + 6\cos(t) + 1)\dot{t} + (\frac{1}{t^{2}+1})\dot{k}$$
 1M

The distance travelled by the second dragon is given by

$$\int_{1}^{3} \left| \dot{r}_{2}(t) \right| = \int_{1}^{3} \sqrt{\left(\frac{t}{8}\right)^{2} + \left(\frac{1}{t}\right)^{2} + \left(\frac{-\sin\frac{t}{2}}{2}\right)^{2}} dt$$

$$= 1.50019 = 1.500$$
1A

$$\int_{1}^{3} \operatorname{norm}\left(\frac{d}{dt}(r2(t))\right) dt$$
1.50019

Question 6

a. Let the sales figure be K on that particular day. E(K) = $3000 + (-10) \times 25 + 5 \times 200 = 3000 - 250 + 1000 = 3750$ 1A

 $Var(K) = 25^2 \times 5^2 + 5^2 \times 15^2 = 21250$

 $SD(K) = \sqrt{Var(K)} = \sqrt{21250} = 25\sqrt{34}$ 1A

Thus, $K \sim N(3750, 21250)$

b. Pr(K > 3800) = 0.36580 = 0.3658 **1**A

© The Mathematical Association of Victoria, 2024

d.
$$\overline{K} \sim N\left(3750, \left(\frac{25\sqrt{34}}{\sqrt{5}}\right)^2\right)$$
 1M

 $Pr(ave. Saturdays exceed 3800) = Pr(\overline{K} > 3800) = 0.2216$ 1A

f. *p* -value $\Pr(k < 3700 \mid \mu = 3750) = 0.2215$ **1M**

We thus do not reject the null hypothesis. There could be some truth in owner's claim. 1A

END OF QUESTION AND ANSWER BOOK SOLUTIONS