# **Multiple-choice questions**

| 7  |                    | coordinates of the x-axis intercepts of the graph of the ellipse with the                               |
|----|--------------------|---------------------------------------------------------------------------------------------------------|
|    | equat              | ion $\frac{x^2}{9} + \frac{y^2}{25} = 1$ are:                                                           |
|    |                    | (-9, 0) and (9, 0)                                                                                      |
|    |                    | (-5, 0) and (5, 0)<br>(0, -3) and (0, 3)                                                                |
|    |                    | (-3, 0) and $(3, 0)$                                                                                    |
|    | Ε                  | (3, 0) and $(5, 0)$                                                                                     |
| 8  | The s              | olutions of $\cos 3x = \frac{1}{2}$ for $x \in [0, 2\pi]$ are:                                          |
|    | A                  | $\frac{\pi}{3}, \frac{5\pi}{3}$ only                                                                    |
|    | B                  | $\frac{\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}, \frac{11\pi}{3}, \frac{13\pi}{3}, \frac{17\pi}{3}$ only |
|    |                    | $\frac{\pi}{9}, \frac{5\pi}{9}, \frac{7\pi}{9}, \frac{11\pi}{9}$ only                                   |
|    | D                  | $\frac{\pi}{9}, \frac{7\pi}{9}, \frac{13\pi}{9}$ only                                                   |
|    | Ε                  | $\frac{\pi}{9}, \frac{5\pi}{9}, \frac{7\pi}{9}, \frac{11\pi}{9}, \frac{13\pi}{9}, \frac{17\pi}{9}$ only |
| 9  |                    | equations for the asymptotes of the hyperbola with equation $\frac{1}{2}$                               |
|    | $\frac{(y+1)}{25}$ | $\frac{x^{2}}{16} - \frac{(x-2)^{2}}{16} = 1$ are:                                                      |
|    | Α                  | $y = \frac{5}{4}x + \frac{8}{3}$ and $y = \frac{-3}{4}x + \frac{2}{3}$                                  |
|    | В                  | $y = \frac{4}{5}x + \frac{10}{5}$ and $y = \frac{-4}{5}x + \frac{7}{5}$                                 |
|    |                    | $y = \frac{5}{4}x + \frac{10}{3}$ and $y = \frac{-5}{4}x + \frac{2}{3}$                                 |
|    |                    | $y = \frac{4}{5}x + \frac{10}{5}$ and $y = \frac{-4}{5}x + \frac{7}{3}$                                 |
|    | Ε                  | $y = \frac{5}{4}x - \frac{7}{2}$ and $y = \frac{-5}{4}x + \frac{3}{2}$                                  |
| 11 | Let se             | ec $x = 3, \frac{3\pi}{2} < x \le 2\pi$ . The exact value of cot x is:                                  |
|    | Α                  | $-2\sqrt{2}$                                                                                            |
|    | B                  | $2\sqrt{2}$                                                                                             |
|    | С                  | $\frac{-1}{\sqrt{10}}$                                                                                  |
|    | D                  | $\frac{\sqrt{2}}{4}$                                                                                    |
|    | E                  | $-2\sqrt{2}$ $2\sqrt{2}$ $\frac{-1}{\sqrt{10}}$ $\frac{\sqrt{2}}{4}$ $-\sqrt{2}$ $\frac{-\sqrt{2}}{4}$  |
|    | -                  | 4                                                                                                       |

| 10 | The of        | $x_{1}$                                                                                  |
|----|---------------|------------------------------------------------------------------------------------------|
| 12 | A             | puations of the asymptotes of $y = 2 \tan^{-1}x + \pi$ are:<br>$y = -\pi$ and $y = 3\pi$ |
|    | B             | $y = -\pi$ and $y = 3\pi$<br>$y = 0$ and $y = 2\pi$                                      |
|    |               | $y = \frac{\pi}{2}$ and $y = \frac{3\pi}{2}$                                             |
|    | С             | $y = \frac{1}{2}$ and $y = \frac{1}{2}$                                                  |
|    | D             | $y = -2 + \pi$ and $y = 2 + \pi$                                                         |
|    | Ε             | $y = -\pi + 2$ and $y = 3\pi + 2$                                                        |
| 14 | 4             | $x + \frac{1}{2}\cos^{-1} x = a$ where <i>a</i> is a constant. The value of <i>a</i> is: |
|    | A             | 0                                                                                        |
|    | B             | 1                                                                                        |
|    | С             | π                                                                                        |
|    | D             | $\frac{\pi}{2}$                                                                          |
|    | Ε             | $\frac{\pi}{4}$                                                                          |
| 15 |               | mily of equations of the vertical asymptotes of the function with rule                   |
|    | $f(\theta) =$ | $\frac{1}{1+\cos\theta}$ is:                                                             |
|    | Α             | $\theta = \frac{3\pi}{2}k$ where $k \in \mathbb{Z} \setminus \{0\}$                      |
|    | В             | $\theta = \frac{\pi}{2}(3 - 2k)$ where $k \in \mathbb{Z}$                                |
|    | С             | $\theta = \frac{\pi}{2}(3+2k)$ where $k \in \mathbb{Z} \setminus \{0\}$                  |
|    | D             | $\theta = \frac{\pi}{2}(2+4k)$ where $k \in \mathbb{Z}$                                  |
|    | Е             | $\theta = \frac{\pi}{2}(3+4k)$ where $k \in \mathbb{Z}$                                  |
|    |               |                                                                                          |

17 The gradient of the tangent to the ellipse with equation  $\frac{x^2}{9} + \frac{y^2}{4} = 1$  at the point  $(-4\sqrt{2})$ 

$$\begin{pmatrix} 1, \frac{4\sqrt{2}}{3} \end{pmatrix} \text{ is:} \\ \mathbf{A} & \frac{-\sqrt{2}}{6} \\ \mathbf{B} & \frac{1}{3\sqrt{2}} \\ \mathbf{C} & \frac{-2}{3} \\ \mathbf{D} & \frac{4}{9} \\ \mathbf{E} & \frac{-4}{9} \end{cases}$$

18 Using an appropriate substitution,  $\int_0^1 x\sqrt{2x+1} \, dx$  is equal to:

 $\begin{array}{lll}
\mathbf{A} & & \frac{1}{4} \int_{1}^{3} (u-1)\sqrt{u} \, du \\
\mathbf{B} & & \int_{1}^{3} (u-1)\sqrt{u} \, du \\
\mathbf{C} & & \frac{1}{4} \int_{0}^{1} (u-1)\sqrt{u} \, du \\
\mathbf{D} & & \int_{0}^{1} (u-1)\sqrt{u} \, du \\
\mathbf{E} & & \frac{1}{2} \int_{1}^{3} (u-1)\sqrt{u} \, du
\end{array}$ 

19 An antiderivative of 
$$\frac{9}{x^2 - 9x}$$
 is:  
A  $\log_e |x^2 - 9x|$   
B  $(2x - 9) \log_e |x^2 - 9x|$   
C  $\frac{-9}{x} - \log_e |x|$   
D  $\log_e |x| - \log_e |\frac{9}{x}|$   
E  $\log_e \frac{|x - 9|}{|x|}$ 

20 The graph of y = f(x) is shown below.



If F(x) is an antiderivative of f(x), the stationary points of the graph of y = F(x) are:

- A a local minimum at x = 0, a local maximum at x = 3
- **B** stationary points of inflexion at x = 0 and x = 3, a local maximum at x = -2
- **C** a stationary point of inflexion at x = 3, a local maximum at x = -2
- **D** a stationary point of inflexion at x = 0, a local maximum at x = -2
- **E** a stationary point of inflexion at x = 3, a local minimum at x = -2

- If  $\frac{dy}{dx} = 4 + y^2$  and y = 0 when x = 0, then y is equal to: 21 **A**  $\frac{1}{3}x^2 + 4x$ **B**  $\frac{1}{2} \tan(2x)$ **C**  $2 \tan\left(\frac{1}{2}x\right)$ D  $2 \tan x$  $2 \tan(2x)$ E
- 22 A particle moves in a straight line so that its position x cm from a fixed point O at time t seconds ( $t \ge 0$ ) is given by  $x = t^3 - 9t^2 + 24t - 1$ . The position of the particle (in cm) the second time it is instantaneously at rest is: 4
  - Α
  - 2 B
  - С 10
  - D 14
  - Е 15
- A body is projected up from the ground with a velocity of 30 m/s. Its 23 acceleration due to gravity is  $-10 \text{ m/s}^2$ . The body's velocity is equal to zero:
  - after 0 seconds Α
  - B after 1 second
  - С after 2 seconds
  - D after 3 seconds
  - Е never
- 24 A car accelerating uniformly from rest reaches a speed of 50 km/h in 5 seconds. In that time the car will have travelled:
  - $\frac{625}{18}$  metres A
  - 125 metres B

  - $\frac{625}{9}$  metres С
  - D 1.25 kilometres
  - E 34.72 kilometres
- 25 A particle is moving along Ox so that, at time  $t, x = 5 \sin(2t)$ . The acceleration of the particle when  $t = \frac{\pi}{4}$  is:
  - Α -20В -10С 0
  - 10 D

  - Е 20

- 26 A particle moves in a straight line. At time  $t, t \ge 0$ , its displacement x to the right of a fixed point O on the line is given by  $x = 9t^2 t^3$ . The interval of time for which the particle is moving to the right is:
  - **A** (0, 6)
  - **B** (6, ∞)
  - $\mathbf{C}$  (- $\infty$ , 0)
  - **D** (−∞, 6)
  - **E** (0, 9)
- 27 A particle moves along a straight line such that at time *t* seconds its position in metres relative to a fixed point *O* on the line is given by  $x(t) = 5t^2 4$ . The velocity (in m/s) when t = 2 is:
  - A 8
  - **B** 10
  - **C** 20
  - **D** 6
  - **E** -10
- 28 The displacement x from the origin of a particle travelling in a straight line is given by  $x = 2t^3 10t^2 44t + 112$ . The average speed (in m/s) of the particle during the first 4 seconds is:
  - A –76
  - **B** –24
  - **C** 4
  - **D** 52
  - **E** 76
- **29** The velocity–time graph shown describes the motion of a particle.



The acceleration of the particle (in  $m/s^2$ ) during the first 160 seconds is:

- **A** –40
- **B** –0.25
- **C** 0
- **D** 0.25
- **E** 40

- 30 The displacement x metres from the origin of a particle travelling in a straight line is given by  $x = 2 - 2 \cos\left(\frac{3\pi}{4}t - \frac{\pi}{2}\right)$ . The maximum displacement of the particle (in m) is: A -4 B -2 C 0 D 2 E 4
- 31 A particle moves in a straight line so that its position x cm from a fixed point O at time t seconds ( $t \ge 0$ ) is given by  $x = t^3 9t^2 + 24t 1$ . The particle's initial position (in cm) is:
  - **A** 0 **B** 5
  - **B** 5 **C** 1
  - $\mathbf{D}$  -1
  - **E** 2
- 32 A particle moves in a straight line so that its position x cm from a fixed point O at time t seconds ( $t \ge 0$ ) is given by  $x = t^3 9t^2 + 24t 1$ . The particle's initial velocity (in cm/s) is:
  - **A** 0
  - **B** 24
  - **C** 1
  - **D** -1
  - **E** 9

33 A ball is dropped vertically, hits the ground and bounces vertically upwards to its original height. It continues bouncing, returning to its original height after each bounce. The velocity-time graph that best represents the ball's motion from when it is dropped until it hits the ground for the second time is:



- 34 A body is projected up from the ground with a velocity of 30 m/s. Its acceleration due to gravity is  $-10 \text{ m/s}^2$ . The maximum height (in m) reached by the body is:
  - **A** 90
  - **B** 30
  - **C** 6
  - **D** 45
  - **E** 3

35 A particle moves in a straight line. At time *t* seconds its displacement from a fixed origin is *x* metres and its velocity is *v* m/s. Given that  $v = \sqrt{16x - 2x^2}$ , the acceleration of the particle in m/s<sup>2</sup> when x = 2 is:

- **A** 0
- **B** 2
- **C** 4
- **D** 6
- **E** 8
- 36 The displacement x from the origin of a particle travelling in a straight line is given by  $x = 2t^3 10t^2 44t + 112$ . The acceleration (in m/s<sup>2</sup>) at time
  - t = 3 seconds is:
  - A -24
  - **B** −16
  - $\begin{array}{c} \mathbf{C} & \mathbf{0} \\ \mathbf{D} & \mathbf{1} \end{array}$
  - **D** 16
  - **E** 24

37 A particle moves with velocity v m/s as indicated in the velocity–time graph.



The distance, in metres, travelled by the particle in the first 4 seconds is:

- **A** 10
- **B** 15
- **C** 20
- **D** 25
- **E** 30

**38** The following is the velocity–time graph of a racing car over a short course.



Which one of the following could be the acceleration–time graph of the car's motion?



**39** This velocity–time graph represents the motion of a ball that is thrown vertically upwards from a high balcony and then falls to the ground below. The air resistance is negligible.



The height in metres of the balcony above the ground is:

- A 11.25
- **B** 15
- **C** 20
- **D** 25
- **E** 31.25

### Short-answer questions (technology-free)

- 2 Solve for x the equation  $2 \sin(2x) \cos(2x) = \cos(2x)$  for  $x \in [0, \pi]$ .
- **3 a** On the same set of axes, sketch the graphs of
  - $f: [0, 2\pi] \rightarrow R, f(x) = \sin x \text{ and } g: [0, 2\pi] \rightarrow R, g(x) = \cos x.$
  - **b** Find the coordinates of the points of intersection of the graphs of y = f(x) and y = g(x).
  - **c** Hence find  $\{x: \sin x < \cos x, 0 \le x \le 2\pi\}.$
- 7 Give a vector of magnitude 4 in the direction of vector i 2j + 5k.
- 9 Are the vectors a = 2i + j 2k, b = i + j k and c = -2i + 3j + k linearly independent? Prove your result.
- 10 *OAB* is an isosceles triangle with OA = OB. *M* is the midpoint of *AB*. Let  $\overrightarrow{OA} = a$  and  $\overrightarrow{OB} = b$ . Use a vector proof to show that *OM* is perpendicular to *AB*.
- 11 Let A be the point (1, 2, 1) and let B be the point (4, 2, -1).
  - **a** Find the point on *OB* which is closest to *A*.
  - **b** What is the shortest distance between *A* and *OB*?
- 12 For vectors a = i + 3j and b = 2i j describe, through a cartesian equation, the set of points with position vector r = xi + yj such that: a |r-a| = |r-b|

**b** 
$$r \cdot (r-a) = 0$$

- 13 Solve the equation cosec  $(2x) = -\sqrt{2}$ , for  $x \in [0, 2\pi]$ .
- **14** Find the exact value of:
  - **a**  $\sin\left(\tan^{-1}\left(\frac{3}{4}\right)\right)$ **b**  $\cos\left(\tan^{-1}\left(\frac{5}{12}\right)\right)$ .

**15** Sketch the graph of 
$$y = \sec\left(2x - \frac{\pi}{3}\right)$$
, for  $x \in [-\pi, \pi]$ .

16 Sketch the graph of  $y = \cos^{-1}(x + 4)$ .

**17 a** Given that 
$$\sin(\theta + \alpha) = \lambda \sin(\theta - \alpha)$$
 show that  $\tan \theta = \frac{(\lambda + 1) \tan \alpha}{\lambda - 1}$ .

**b** If  $\lambda = 2$  and  $\alpha = \frac{\pi}{3}$ , solve the equation  $\sin(\theta + \alpha) = \lambda \sin(\theta - \alpha)$  for  $\theta$ where  $-2\pi \le \theta \le 2\pi$ . 18 If  $\sin A = \frac{12}{13}$ ,  $\frac{\pi}{2} < A < \pi$ , and  $\cos B = \frac{-4}{5}$ ,  $\pi < B < \frac{3\pi}{2}$ , find the exact value of  $\cos (A - B)$ .

**19** For each of the following, find Arg  $(z_1z_2)$  and Arg  $(z_1) + \text{Arg } (z_2)$ .

**a** 
$$z_1 = \operatorname{cis}\left(\frac{\pi}{4}\right)$$
 and  $z_2 = \operatorname{cis}\left(\frac{\pi}{3}\right)$   
**b**  $z_1 = \operatorname{cis}\left(\frac{-2\pi}{3}\right)$  and  $z_2 = \operatorname{cis}\left(\frac{-3\pi}{4}\right)$   
**c**  $z_1 = \operatorname{cis}\left(\frac{2\pi}{3}\right)$  and  $z_2 = \operatorname{cis}\left(\frac{\pi}{2}\right)$ 

20 For the transformation  $z \rightarrow z + 2$ , sketch the image of each of the following sets of points on an Argand diagram. **a** |z| = 3

**a** |z| = 3**b** Arg  $(z) = \frac{\pi}{3}$ 

c 
$$\frac{-\pi}{3} \le \operatorname{Arg}(z) \le \frac{\pi}{3}$$

**d** 
$$|z - (1 + i)| = |z - 2|$$

**21 a** If  $0 < \text{Arg}(z) < \frac{\pi}{2}$ , show that  $\text{Arg}(1-z) = -\pi + \text{Arg}(z-1)$ .

**b** If 
$$\frac{-\pi}{2} < \text{Arg}(z) < 0$$
, show that Arg  $(1 - z) = \text{Arg}(z - 1) + \pi$ .

22 Find the locus defined by arg  $(z + i) - \arg (z + 1) = \frac{\pi}{2}$ .

23 Shade the region of the complex plane defined by  $\{z: |z-1+i| \ge 4\}$ .

- 24 For the equation  $P(z) = z^3 + (3 2i)z^2 + z + 3 2i$ :
  - **a** show that -3 + 2i is a solution of the equation P(z) = 0
  - **b** find all the solutions of the equation P(z) = 0.

25 The complex number  $z = \sqrt{2} \operatorname{cis} \theta$  is shown on the Argand diagram below. Plot and label the complex numbers u, v and w on the same diagram, where  $u = z^2$ ,  $v = \frac{1}{z}$  and  $w = z^2 + \frac{1}{z}$ .



26 Shade the region of the complex plane defined by  $\{z: iz - i\overline{z} < 3\}$ .

27 Find the equation of the tangent to the ellipse with equation  $\frac{x^2}{4} + y^2 = 1$  at the point(s) at which:

- **a** x = 2**b** x = 0
- $\mathbf{c} \qquad x=1.$

**28** If 
$$f(x) = \log_e (\sin x)$$
, find  $f''(x)$ .

**29** The shaded region is rotated around the *x*-axis to form a solid of revolution. Find an expression for the volume of the resultant solid.



- 30 a Show that  $\frac{d}{dx} (\sin^{-1} (\sqrt{2x})) = \frac{\sqrt{2}}{2\sqrt{x 2x^2}}$ . b Hence find the exact value of  $\int_{0.25}^{0.5} \frac{1}{\sqrt{x - 2x^2}} dx$ .
- 31 Find the area of the region bounded by the two curves  $y = 4x^2 + 2x$  and  $y = -2x^2 + x + 1$ .

32 Verify that  $y = ae^{kx^2}$  is a solution to the differential equation  $x \frac{d^2y}{dx^2} - (2kx^2 + 1)\frac{dy}{dx} = 0.$ 

**33** Solve the differential equation  $(x + 1)^2 \frac{dy}{dx} = 1$  where y = 2 when x = 0.

34 Find the values of *a* and *b* if  $y = a \cos(2x) + b \sin(2x)$  satisfies the differential equation  $\frac{d^2y}{dx^2} - \frac{dy}{dx} + 2y = \cos(2x) + \sin(2x)$ .

35 Solve the differential equation  $f'(x) = \frac{3x}{\sqrt{x^2 + 1}}$ , given that f(0) = 2.

36 A tank contains 50 litres of a salt solution which contains 40 grams of dissolved salt. Water runs into the tank at the rate of 1.5 litres/minute and the mixture is kept uniform by stirring. The mixture then runs out at the same rate as the water runs in. If *m* grams of salt remain after *t* minutes, express:

**a** 
$$\frac{dm}{dt}$$
 in terms of *n*

**b** m in terms of t.

37 Solve the differential equation  $\frac{dy}{dx} = \frac{2}{1-x^2}$  given that y = 0 when x = 0.

38 Sand is poured into a conical heap so that the radius length r cm is always  $\frac{3}{4}$  of the height h cm. The volume of sand in the heap is V cm<sup>3</sup> at time t minutes.

- **a** Express V in terms of h.
- **b** If the height is increasing at the rate of 2 cm/min, express  $\frac{dV}{dt}$  in terms of *h*.

39 The velocity, v m/s, of a particle moving in a line is given by  $v = e^{\frac{-x}{2}} + 4$ ,  $t \ge 0$ , where x metres is the position of the particle at time t seconds.

- **a** Find the acceleration of the particle in terms of *x*.
- **b** Find, correct to one decimal place, the time it takes for the particle to travel 20 metres.
- 40 An object is thrown vertically upwards from the top of a building, 50 metres above ground level. The object takes 10 seconds to reach the ground.
  - **a** Find the initial speed.
  - **b** Find the maximum height reached, correct to one decimal place.
- 41 A particle moves in a line. At time *t* seconds,  $t \ge 0$ , its displacement from a fixed origin *O* is *x* metres and its acceleration,  $a \text{ m/s}^2$ , is given by  $a = 2t \cos t$ . If the particle starts at the point where x = 3, with a velocity of 2 m/s towards *O*, express *x* in terms of *t*.

42 A car travelling at 24 m/s overtakes a truck travelling at a constant speed of 17 m/s along a straight road. *T* seconds later, the car decelerates uniformly to rest. The truck continues at constant speed and it passes the car at the instant the car comes to a stop. This is exactly 60 seconds after the car had passed the truck.



The velocity–time graph representing this situation is shown above. Find *T*.

- **43** A particle is moving in a line so that its displacement, *x* m, from a fixed origin *O*, at time, *t* seconds, is given by  $x = \cos(2t) + 4\cos t$ ,  $0 \le t \le 2\pi$ . If *v* m/s is the velocity and *a* m/s<sup>2</sup> is the acceleration at time *t*, find at what time(s) the particle:
  - a is at rest
  - **b** has zero acceleration.
- 44 Find the cartesian equation for the graph represented by the vector equation  $r(t) = \sec(t) i + (1 + \tan(t))j, t \in \left[0, \frac{\pi}{2}\right].$
- **45** The following vector equations each represent the position of a particle at time  $t, t \ge 0$ . For each equation:
  - i find the corresponding cartesian equation stating domain and range
  - **ii** sketch the path of the particle indicating the initial position and the initial direction of motion.

**a** 
$$\mathbf{r}(t) = \cos\left(t + \frac{\pi}{4}\right)\mathbf{i} + \sin\left(t + \frac{\pi}{4}\right)\mathbf{j}$$

**b** 
$$r(t) = (3-t)i + (t^2 + 2t)j$$

**c** 
$$\boldsymbol{r}(t) = \tan(t) \, \boldsymbol{i} + \sec(t) \, \boldsymbol{j}, \, t \in \left[0, \frac{\pi}{2}\right]$$

46 For each of the following vector equations:

- i find the corresponding cartesian equation stating domain and range
- ii sketch the relation.

**a** 
$$r(t) = (3-t)i + 4(t+1)j, t \in R$$

**b** 
$$r(t) = \cos(t) i + (1 - \sin(t)) j, t \in R$$

 $\mathbf{c} \qquad \mathbf{r}(t) = \sin^2\left(\frac{\pi t}{2}\right)\mathbf{i} + 2\cos^2\left(\frac{\pi t}{2}\right)\mathbf{j}, t \in [0, \infty)$ 

## **Extended-response questions**

3 A cuboid is positioned on level ground so that it rests on one of its vertices, O.

$$\overrightarrow{OA} = 3i - 4j - k, \overrightarrow{OB} = i + 2wj - 5k, \overrightarrow{OC} = xi + yj + 5k.$$



- **a i** Find  $\overrightarrow{OA} \cdot \overrightarrow{OB}$  in terms of w.
  - ii Hence find the value of *w*.
- **b i** Use the fact that *OA* is perpendicular to *OC* to write an equation relating *x* and *y*.
  - ii Find another equation relating x and y and hence find the values of x and y.
- **c** Hence find the exact volume of this cuboid.
- 4 In the figure *OAB* is a triangle with *D* the midpoint of *AB*. Let  $\overrightarrow{OA} = a$  and  $\overrightarrow{OB} = b$ . *G* is a point on *OD* such that  $\overrightarrow{OG} = \frac{2}{3}\overrightarrow{OD}$ .



- **a** Find  $\overrightarrow{OG}$  in terms of **a** and **b**.
- **b** Find  $\overrightarrow{GA}$  in terms of **a** and **b**.
- **c** Find  $\overrightarrow{GA} \cdot \overrightarrow{OG}$ .
- **d i** If GA is perpendicular to *OG* show that angle *BOA* has

- magnitude  $\theta^{\circ}$  where  $\cos \theta = \frac{|\boldsymbol{b}|^2 2|\boldsymbol{a}|^2}{|\boldsymbol{a}||\boldsymbol{b}|}$
- ii If  $|\boldsymbol{b}| = \sqrt{3} |\boldsymbol{a}|$ , give the magnitude of angle *BOA* correct to two decimal places.

5 OACB is a square with 
$$\overrightarrow{OA} = a\mathbf{j}$$
 and  $\overrightarrow{OB} = a\mathbf{i}$ . M is the midpoint of OA.



- **a** Find, in terms of *a*:
  - $\vec{I}$   $\vec{OM}$
  - ii  $\overrightarrow{MC}$ .
- **b** P is a point on MC such that  $\overrightarrow{MP} = \lambda \overrightarrow{MC}$ . Find  $\overrightarrow{MP}$ ,  $\overrightarrow{BP}$  and  $\overrightarrow{OP}$  in terms of  $\lambda$  and a.
- **c** If *BP* is perpendicular to *MC*:
  - i find the value of  $\lambda$  and also find  $|\vec{BP}|$ ,  $|\vec{OP}|$  and  $|\vec{OB}|$ . Comment.
  - ii if  $\theta = \angle PBO$ , evaluate  $\cos \theta$ .
- **d** If  $|\overrightarrow{OP}| = |\overrightarrow{OB}|$  find the possible values of  $\lambda$  and illustrate these two cases carefully.

In the diagram,  $\overrightarrow{OA} = a\mathbf{j}$ ,  $\overrightarrow{OB} = a\mathbf{i}$  and *BP* is perpendicular to *MC* where *M* is the midpoint of *OA*.  $\overrightarrow{PX} = a\mathbf{k}$ . *Y* is a point on *XC* such that *PY* is perpendicular to *XC*.



e Find  $\overrightarrow{OY}$ .

| 6 | Let $P(z) = -z^3 - z^2 + 2z - 12, z \in C$ . |                                                                                                                         |
|---|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|   | a                                            | i Find $P(u)$ , where $u = 1 - \sqrt{3} i$ .                                                                            |
|   | _                                            | ii What can be deduced about <i>u</i> ?                                                                                 |
|   | b                                            | i Find all the roots of the equation $P(z) = 0$ , expressing your                                                       |
|   |                                              | <ul><li>answers in cartesian form.</li><li>ii Plot the roots on an Argand diagram.</li></ul>                            |
|   | с                                            | ii Plot the roots on an Argand diagram.<br>Express <i>u</i> in polar form, and hence find Arg ( <i>iu</i> ).            |
|   | C                                            | Express <i>u</i> in polar form, and hence find <i>f</i> ing ( <i>iu</i> ).                                              |
| 7 | Let <i>u</i> =                               | $= -4\sqrt{2} - 4\sqrt{2} i \text{ and } v = 2 \operatorname{cis}\left(\frac{-\pi}{4}\right).$                          |
|   | a                                            | Express <i>u</i> in exact polar form.                                                                                   |
|   | b                                            | Show that one of the cube roots of $u$ is $v$ .                                                                         |
|   | c                                            | Find the remaining two cube roots of $u$ in exact polar form.                                                           |
|   | d                                            | Express $v$ in exact cartesian form.                                                                                    |
|   | e                                            | Plot the three cube roots of $u$ on an Argand diagram.                                                                  |
|   | f                                            | Show that the equation $z^3 - 3\sqrt{2} z^2 i - 6z = -4\sqrt{2} - 6\sqrt{2} i$ can be                                   |
|   |                                              | expressed in the form $(z - w)^3 = -4\sqrt{2} - 4\sqrt{2}i$ where $w \in C$ .                                           |
|   | g                                            | Hence find one root of the equation $z^3 - 3\sqrt{2} z^2 i - 6z = -4\sqrt{2} - 6\sqrt{2} i$<br>in exact cartesian form. |
|   |                                              | in exact cartesian form.                                                                                                |
| 8 | a                                            | Plot the complex numbers $u = 8 - 6i$ and $v = -1 - 7i$ on an Argand                                                    |
|   |                                              | diagram.                                                                                                                |
|   | b                                            | Verify that <i>u</i> is a member of the subset <i>S</i> , where                                                         |
|   |                                              | $S = \{z:  z  = 10, z \in C\}.$                                                                                         |
|   | c                                            | Sketch S on the Argand diagram in part <b>a</b> .                                                                       |
|   | d                                            | Let <i>w</i> be such that $w + i\overline{v} = \overline{v}$ . Find <i>w</i> in cartesian form.                         |
|   | e                                            | Sketch $T = \{z:  z  \le 10\} \cap \{z:  z - w  =  z - u \}$ on the Argand diagram                                      |
|   |                                              | in part <b>a</b> .                                                                                                      |
| 9 | In the                                       | Argand diagram shown, <i>M</i> is the midpoint of <i>LN</i> .                                                           |
|   |                                              | $\operatorname{Im}(z)$                                                                                                  |
|   |                                              |                                                                                                                         |
|   |                                              |                                                                                                                         |
|   |                                              |                                                                                                                         |
|   |                                              | v /                                                                                                                     |

- $\begin{array}{c|c} & M \\ \hline & \\ \hline & \\ 0 \\ \hline \end{array} \\ \hline & \\ 0 \\ \hline \end{array} \\ Re (z)$
- **a** If |z-1| = |z-v|, show that the locus of z is given by the relation  $2vy = 2x + v^2 - 1$  where z = x + iy.

**b** Show that 
$$u = \frac{v^2 + 1}{2} + vi$$
.

**c** As v moves along the positive Im (z)-axis, u moves along a curve. Find the cartesian equation of this curve.

| 10 | Let $u = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$ . |                                                                                                                      |
|----|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|    | a                                                    | Express <i>u</i> in polar form, where $-\pi < \text{Arg } u \le \pi$ .                                               |
|    | b                                                    | Using an Argand diagram, show that Arg $(u + 1) = \frac{\pi}{8}$ .                                                   |
|    | c                                                    | i Express $u + 1$ in cartesian form, and in polar form.                                                              |
|    |                                                      | ii Hence show that the exact value of $\sin\left(\frac{\pi}{8}\right) = \frac{\sqrt{2} - \sqrt{2}}{2}$ .             |
|    | d                                                    | Using an appropriate compound angle formula, verify your exact value                                                 |
|    |                                                      | for $\sin\left(\frac{\pi}{8}\right)$ .                                                                               |
| 11 | a                                                    | For $g(x) = \frac{1}{f(x)}$ , find the rule for $g''(x)$ in terms of $f'(x)$ , $f''(x)$ and $f(x)$ .                 |
|    | b                                                    | Show that if there is a point of inflexion at $(a, g(a))$ then                                                       |
|    |                                                      | $[f'(a)]^2 = \frac{1}{2} f''(a) f(a).$                                                                               |
|    | Consid                                               | $ler f(x) = x^2 - 2bx + 16.$                                                                                         |
|    | c                                                    | Given that $\Delta$ is the discriminant of $f(x)$ , find the values of b for which:                                  |
|    |                                                      | $ \mathbf{i} \qquad \Delta = 0 \\ \mathbf{i} \mathbf{i} \qquad \Delta < 0 $                                          |
|    |                                                      | $\begin{array}{c} \mathbf{n} & \Delta < 0 \\ \mathbf{i}\mathbf{i}\mathbf{i} & \Delta > 0. \end{array}$               |
|    | d                                                    | Find the coordinates of stationary points and points of inflexion for the                                            |
|    |                                                      | graph of $y = \frac{1}{f(x)}$ in terms of <i>b</i> when the discriminant of $f(x) < 0$ .                             |
|    | e                                                    | Sketch the graph of $y = \frac{1}{f(x)}$ when the discriminant of $f(x) = 0$ .                                       |
|    | f                                                    | Find an antiderivative for $\frac{1}{f(x)}$ in each of the cases discussed in part <b>c</b> .                        |
| 12 | a                                                    | For $y = \tan x + \frac{1}{3} \tan^3 x$ , find $\frac{dy}{dx}$ .                                                     |
|    | b                                                    | Solve the equation $\tan x + \frac{1}{3}\tan^3 x = 0$ for $x \in \left[0, \frac{\pi}{2}\right]$ .                    |
|    |                                                      |                                                                                                                      |
|    | C                                                    | Find the equation of the tangent to the curve with equation $\frac{1}{\pi}$                                          |
|    |                                                      | $y = \tan x + \frac{1}{3}\tan^3 x$ at the point where $x = \frac{\pi}{4}$ .                                          |
|    | d                                                    | Find the area between the curve with equation $y = \tan x + \frac{1}{3} \tan^3 x$ , the                              |
|    |                                                      | axes and the line $x = \frac{\pi}{4}$ .                                                                              |
|    | e                                                    | The region contained between the axes, the line $x = \frac{\pi}{4}$ and the curve                                    |
|    |                                                      | $y = \sec^2 x$ is rotated around the <i>x</i> -axis to form a solid of revolution.<br>Find the volume of this solid. |
|    |                                                      |                                                                                                                      |

- The volume, v litres, of oil in an irregularly shaped tank, when the oil depth is 13 h metres, is given by  $v = 8000h \tan^{-1} h$ .
  - Find the exact volume of oil in the tank, in litres, when the oil i ล depth is 1 metre.
    - ii Find the oil depth, correct to the nearest centimetre, when the volume is 10000 litres.

The tank is initially empty. Oil is then poured into the tank at a constant rate of 2000 litres per minute.

- Find, in terms of *h*, an expression for the rate at which the oil depth is b increasing, in metres per minute, when the depth is h metres.
- Write a definite integral, the value of which gives the time it i С takes in minutes for the oil depth in the tank to reach  $\sqrt{3}$  metres.
  - Show that the exact time taken for the oil depth to reach ii  $\sqrt{3}$  metres is  $\frac{4\pi}{\sqrt{3}}$  minutes.
- In a small town of population 1000, the rate of infection of a type of influenza 14 is modelled by the differential equation  $\frac{dN}{dt} = kN(1000 - N)$  where N is the number of people infected after *t* days and *k* is an unknown constant.
  - If the rate of infection is 100 people per day when the number already a infected is 500, show that the differential equation can be expressed as 2500 dt  $\frac{dt}{dN} = \frac{2500}{N(1000 - N)}.$
  - Express t in terms of N, given that initially 10 people are infected. b
  - By the start of which day will the number of people infected first С exceed 750?
- A helicopter is hovering 25 m above the ground and drops a package of food 15 to people below. The acceleration  $a \text{ m/s}^2$  of this package is given by  $a = 9.8 - 0.05v^2$ , where v m/s is the vertical speed at time t s. If x metres is the distance fallen at time *t* s, find:
  - the terminal velocity of the package a
  - the speed of the package when it hits the ground, in m/s, correct to one b decimal place
  - the time it takes the package to reach the ground, in seconds, correct to С one decimal place.

a

- 16 After brakes are applied in a car, under the influence of ABS (anti-lock brakes), the car comes to rest, and two different models have been conjectured. In a controlled experiment the brakes are applied when the car is moving at 25 m/s.
  - **a** In the first model, the acceleration, in  $m/s^2$ , is given by

 $a = \frac{-52}{(t+1)^3}$ ,  $t \ge 0$ , where *t* seconds is the time since the brakes were applied.

- i Express v in terms of t, where v m/s is the speed at time t.
- ii Find the time taken for the car to come to rest using this model.
- **b** In the second model,  $a = \frac{-(900 + v^2)}{60}$ .
  - i Express *t* in terms of *v* for this situation.
  - ii Find the time taken for the car to come to rest using this second model.
- **c** What model takes longer, and by how much?

17 A dragster racing car accelerates uniformly over a straight line course and completes a 'standing' (that is, starting from rest) 400 metres in 8 seconds.

- i Find the acceleration, in  $m/s^2$ , of the dragster over 400 metres.
  - ii Show that the dragster reaches a speed of 100 m/s at the end of the 400 metre course.

At the 400 metre mark, the dragster stops accelerating. At this instant, the dragster's brakes are applied and, in addition, a small parachute opens at the rear to slow the car down. Due to these factors the deceleration of the dragster during this stage of the motion is  $\frac{5000 + 0.5v^2}{400}$  m/s<sup>2</sup>.

- **b i** Show that the differential equation relating v to x, where v m/s is the velocity of the dragster x metres beyond the 400 metre mark, is  $\frac{dv}{dx} = \frac{-(10^4 + v^2)}{800v}$ .
  - ii Hence find, to the nearest metre, the distance the dragster takes to stop from the instant the brakes are applied.
- **c** Use calculus to find the time, in seconds, taken to bring the dragster to rest from the 400 metre mark.

Answers to Revision exercises 1

#### Answers to multiple-choice questions

| <b>36</b> D | 37       E         38       E         39       C           | $\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\23\\24\\25\\26\\27\\28\\29\\30\\31\\32\\33\\34\\35\\36\end{array}$ | D C D B C D D E E B E B B E D D A A E C E E D A A A C D B E D B C D C D |
|-------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
|             | 36         D           37         E           38         E | 34                                                                                                                                                                 | D                                                                       |

#### Answers to short-answer (technology-free) questions









| 36       |                        | $\frac{dm}{dt} = \frac{-3m}{100}$                                                                 |  |  |
|----------|------------------------|---------------------------------------------------------------------------------------------------|--|--|
|          |                        | $m = 40 e^{\frac{-3t}{100}}$                                                                      |  |  |
| 37       | $y = \log$             | $e\left(\frac{1+x}{1-x}\right)$                                                                   |  |  |
| 38       |                        | $V = \frac{3\pi}{16}h^3$                                                                          |  |  |
|          |                        | $\frac{dV}{dt} = \frac{9\pi}{8}h^2$                                                               |  |  |
|          |                        | ai b                                                                                              |  |  |
| 39       | a                      | $a = \frac{-1}{2}e^{-x} - 2e^{\frac{-x}{2}}$                                                      |  |  |
|          | b                      | 4.9 seconds                                                                                       |  |  |
| 40       |                        | 44 m/s                                                                                            |  |  |
|          | b                      | 148.8 m                                                                                           |  |  |
| 41       | $x = \frac{1}{2}t^{3}$ | $-2t+2+\cos t$                                                                                    |  |  |
| 42       | T = 25                 |                                                                                                   |  |  |
| 43       |                        | $t = 0, \pi, 2\pi$                                                                                |  |  |
|          |                        | $t = \frac{\pi}{3}, \pi, \frac{5\pi}{3}$                                                          |  |  |
| 4.4      |                        | 5 5                                                                                               |  |  |
| 44<br>45 |                        | $(-1)^2 = 1, x, y \ge 1$<br><b>i</b> $x^2 + y^2 = 1$ , dom: [-1, 1], ran: [-1, 1]                 |  |  |
| 45       | a                      | <b>i</b> $x + y = 1$ , doin. [-1, 1], fail. [-1, 1]<br><b>ii</b> $y$                              |  |  |
|          |                        | $(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$                                                        |  |  |
|          | b                      | i $y = x^2 - 8x + 15$ , dom: $(-\infty, 3]$ , ran: $[0, \infty)$<br>ii $y$<br>15<br>0<br>(3, 0) x |  |  |
|          | c                      | i $y^2 - x^2 = 1$ , dom: $[0, \infty)$ , ran: $[1, \infty)$<br>ii $y$<br>(0, 1)<br>(0, 1)<br>x    |  |  |

Essential Specialist Mathematics Teacher CD-ROM Revision exercises 1



#### Answers to extended-response questions

| 1 | a      | <ul> <li>i 2 hours 14 minutes</li> <li>ii 1 hour 47 minutes</li> <li>iii 2 hours 0 minutes</li> </ul>                                                                                         |
|---|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        | <ul><li>iv 1 hour 23 minutes</li><li>v 1 hour 52 minutes</li></ul>                                                                                                                            |
|   | b      | $\mathbf{i} \qquad t = \sqrt{5 - 4\sin\theta^\circ} + \frac{\pi\theta}{360}$                                                                                                                  |
| 2 | a      | ii $\theta = 74.5^{\circ}$ , shortest possible time is 1 hour 43 minutes<br>$AB = \sqrt{10}, AC = \sqrt{20}, BC = \sqrt{10}$                                                                  |
| 2 | u<br>b | $y = \frac{1}{2}x + \frac{5}{2}$                                                                                                                                                              |
|   | c<br>d | y = 3x (1, 3)                                                                                                                                                                                 |
|   | e<br>e | $(x-1)^2 + (y-3)^2 = 5$                                                                                                                                                                       |
| 3 | a      | $\mathbf{i} = 8 - 8w$                                                                                                                                                                         |
|   | L      | $ \begin{array}{ll} \mathbf{i} & w = 1 \\ \mathbf{i} & 2w & 4w & 5 & 0 \end{array} $                                                                                                          |
|   | b      | i $3x - 4y - 5 = 0$<br>ii $x + 2y - 25 = 0, x = 11, y = 7$                                                                                                                                    |
|   | c      | $390 \text{ units}^3$                                                                                                                                                                         |
| 4 | a      | $\frac{1}{3}(\boldsymbol{a}+\boldsymbol{b})$                                                                                                                                                  |
|   | b      | $\frac{2}{3}\boldsymbol{a}-\frac{1}{3}\boldsymbol{b}$                                                                                                                                         |
|   | c      | $\frac{1}{9}(2 \boldsymbol{a} ^2 -  \boldsymbol{b} ^2 + \boldsymbol{a} \cdot \boldsymbol{b})$                                                                                                 |
|   | d      | ii $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right) \approx 54.74^{\circ}$                                                                                                                           |
| 5 | a      | $\mathbf{i} \qquad \frac{a}{2}\mathbf{j}$                                                                                                                                                     |
|   |        | ii $ai + \frac{a}{2}j$                                                                                                                                                                        |
|   | b      | $\lambda \left( a \mathbf{i} + \frac{a}{2} \mathbf{j} \right), a(\lambda - 1) \mathbf{i} + \frac{a}{2} (1 + \lambda) \mathbf{j}, \lambda a \mathbf{i} + \frac{a}{2} (1 + \lambda) \mathbf{j}$ |
|   | c      | i $\lambda = \frac{3}{5},  \overrightarrow{BP}  = \frac{2}{\sqrt{5}}a,  \overrightarrow{OP}  = a,  \overrightarrow{OB}  = a$ , isosceles triangle                                             |
|   |        | ii $\frac{1}{\sqrt{5}}$                                                                                                                                                                       |
|   | d      | $\lambda = \frac{3}{5}, -1$                                                                                                                                                                   |
|   | e      | $\frac{a}{30}(28i+29j+5k)$                                                                                                                                                                    |

Essential Specialist Mathematics Teacher CD-ROM Revision exercises 1







|    | Value of $b$<br>b = 4      | Antiderivative $\frac{1}{4-x}$                                                                 |
|----|----------------------------|------------------------------------------------------------------------------------------------|
|    | <i>b</i> = –4              | $\frac{-1}{4+x}$                                                                               |
|    | <i>b</i> > 4 or <i>b</i> < | $<-4$ $\frac{1}{2\sqrt{b^2-16}}\log_e\left(\frac{x-\sqrt{b^2-16}-b}{x+\sqrt{b^2-16}-b}\right)$ |
|    | -4 < <i>b</i> < 4          | $\frac{1}{\sqrt{16-b^2}} \tan^{-1}\left(\frac{x-b}{\sqrt{16-b^2}}\right)$                      |
| 12 | a                          | $\sec^4 x$                                                                                     |
|    | b                          | x = 0                                                                                          |
|    | c                          | $y = 4x - \pi + \frac{4}{3}$                                                                   |
|    | d                          | $\frac{1}{6}(1+2\log_e 2)$                                                                     |
|    | e                          | $\frac{4\pi}{3}$                                                                               |
| 13 | а                          | i $2000\pi$ litres                                                                             |
|    | b                          | $\frac{\mathbf{i}\mathbf{i}}{dt} = \frac{134 \text{ cm}}{4(h + (1 + h^2) \tan^{-1}h)}$         |
|    | с                          | i $\int_0^{\sqrt{3}} \frac{4(h+(1+h^2)\tan^{-1}h)}{1+h^2} dh$                                  |
| 14 | b                          | $t = 2.5 \log_e \left(\frac{99N}{1000 - N}\right)$                                             |
|    | c                          | The start of the 15th day                                                                      |
| 15 | _                          | 14 m/s                                                                                         |
|    | b                          | 13.4 m/s                                                                                       |
|    | c                          | 2.7 s                                                                                          |
| 16 | а                          | i $v = \frac{26}{(t+1)^2} - 1$                                                                 |
|    |                            | ii $\sqrt{26} - 1$ seconds                                                                     |
|    | b                          | i $t = 20 \tan^{-1}\left(\frac{5}{6}\right) - 20 \tan^{-1}\left(\frac{v}{30}\right)$           |
|    |                            | ii $20 \tan^{-1}\left(\frac{5}{6}\right)$ seconds                                              |
|    | c                          | Model 2 takes longer by 9.8 s                                                                  |
| 17 | a                          | <b>i</b> 12.5 $m/s^2$                                                                          |
|    | b                          | ii 277 metres                                                                                  |
|    | c                          | $2\pi$ seconds                                                                                 |