Multiple-choice questions

12 The equations of the asymptotes of $y = 2 \tan^{-1} x + \pi$ are: **A** $y = -\pi$ and $y = 3\pi$ **B** $y = 0$ and $y = 2\pi$ **C** *y* = π $\frac{\pi}{2}$ and $y = \frac{3\pi}{2}$ 2 **D** $y = -2 + \pi$ and $y = 2 + \pi$ **E** $y = -\pi + 2$ and $y = 3\pi + 2$ **¹⁴** ¹ $\frac{1}{2}$ sin⁻¹ x + $\frac{1}{2}$ $\frac{1}{2}$ cos⁻¹ $x = a$ where *a* is a constant. The value of *a* is: **A** 0 **B** 1 $C \qquad \pi$ **D** π 2 **E** π 4 **15** The family of equations of the vertical asymptotes of the function with rule $f(\theta) = \frac{1}{1+\alpha}$ $\frac{1}{1 + \cos \theta}$ is: **A** $\theta = \frac{3\pi}{2}$ $\frac{3\pi}{2}k$ where $k \in \mathbb{Z}\setminus\{0\}$ **B** $\theta = \frac{\pi}{2}$ $\frac{\pi}{2}(3-2k)$ where $k \in \mathbb{Z}$ **C** $\theta = \frac{\pi}{2}$ $\frac{\pi}{2}(3+2k)$ where $k \in \mathbb{Z}\backslash\{0\}$ **D** $\theta = \frac{\pi}{2}$ $\frac{\pi}{2}(2+4k)$ where $k \in \mathbb{Z}$ **E** $\theta = \frac{\pi}{2}$ $\frac{\pi}{2}(3+4k)$ where $k \in \mathbb{Z}$

17 The gradient of the tangent to the ellipse with equation $\frac{x^2}{9}$ $\frac{x^2}{9} + \frac{y^2}{4}$ $\frac{y}{4}$ = 1 at the point

$$
\left(1, \frac{4\sqrt{2}}{3}\right)
$$
 is:
\n**A**
\n**B**
\n**C**
\n**D**
\n**Q**
\n

18 Using an appropriate substitution, \int $\boldsymbol{0}$ $\int_{0}^{1} x\sqrt{2x+1} dx$ is equal to:

> **A** 1 $rac{1}{4}$ 1 $\int_0^3 (u-1)\sqrt{u} \ du$ **B** \int 1 $\int_0^3 (u-1)\sqrt{u} \ du$ $C = \frac{1}{4}$ $rac{1}{4}$ 0 $\int_0^1 (u-1)\sqrt{u} \ du$ **D** \int 0 \int_{0}^{1} $(u-1)\sqrt{u} \, du$ **E** $\frac{1}{2}$ $\frac{1}{2}$ 1 $\int_0^3 (u-1)\sqrt{u} \ du$

19 An antiderivative of
$$
\frac{9}{x^2 - 9x}
$$
 is:
\n**A** $\log_e |x^2 - 9x|$
\n**B** $(2x - 9) \log_e |x^2 - 9x|$
\n**C** $\frac{-9}{x} - \log_e |x|$
\n**D** $\log_e |x| - \log_e |\frac{9}{x}|$
\n**E** $\log_e \frac{|x - 9|}{|x|}$

20 The graph of $y = f(x)$ is shown below.

If $F(x)$ is an antiderivative of $f(x)$, the stationary points of the graph of $y = F(x)$ are:

- **A** a local minimum at $x = 0$, a local maximum at $x = 3$
- **B** stationary points of inflexion at $x = 0$ and $x = 3$, a local maximum at $x = -2$
- **C** a stationary point of inflexion at $x = 3$, a local maximum at $x = -2$
- **D** a stationary point of inflexion at $x = 0$, a local maximum at $x = -2$
- **E** a stationary point of inflexion at $x = 3$, a local minimum at $x = -2$
- **21** If $\frac{dy}{dx} = 4 + y^2$ and $y = 0$ when $x = 0$, then y is equal to: $\mathbf{A} = \frac{1}{3}$ $\frac{1}{3}x^2 + 4x$ **B** $\frac{1}{2}$ $\frac{1}{2}$ tan $(2x)$ $C \t2 \tan \left($ J $\left(\frac{1}{r}\right)$ $\frac{1}{2}x$ \mathbf{D} 2 tan *x* E 2 tan $(2x)$
- **22** A particle moves in a straight line so that its position *x* cm from a fixed point *O* at time *t* seconds ($t \ge 0$) is given by $x = t^3 - 9t^2 + 24t - 1$. The position of the particle (in cm) the second time it is instantaneously at rest is
	- $\begin{array}{ccc} \mathbf{A} & 4 \\ \mathbf{B} & 2 \end{array}$
	- **B**
	- **C** 10
	- **D** 14
	- **E** 15
- **23** A body is projected up from the ground with a velocity of 30 m/s. Its acceleration due to gravity is -10 m/s^2 . The body's velocity is equal to zero:
	- **A** after 0 seconds
	- **B** after 1 second
	- **C** after 2 seconds
	- **D** after 3 seconds
	- **E** never
- **24** A car accelerating uniformly from rest reaches a speed of 50 km/h in 5 seconds. In that time the car will have travelled
	- **A** $\frac{625}{18}$ metres
	- **B** 125 metres
	- 625
	- **C** $\frac{25}{9}$ metres
	- **D** 1. 25 kilometres
	- **E** 34.72 kilometres
- **25** A particle is moving along *Ox* so that, at time *t*, $x = 5 \sin(2t)$. The acceleration of the particle when $t = \frac{\pi}{4}$ $\frac{\pi}{4}$ is:
	- **A** -20 **B** -10 **C** 0
	- **D** 10
	- **E** 20
- **26** A particle moves in a straight line. At time $t, t \ge 0$, its displacement *x* to the right of a fixed point O on the line is given by $x = 9t^2 - t^3$. The interval of time for which the particle is moving to the right is
	- **A** $(0, 6)$
	- **B** (6, ∞)
	- $C \quad (-\infty, 0)$
	- $D \left(-\infty, 6 \right)$
	- **E** $(0, 9)$
- **27** A particle moves along a straight line such that at time *t* seconds its position in metres relative to a fixed point *O* on the line is given by $x(t) = 5t^2 - 4$. The velocity (in m/s) when $t = 2$ is:
	- **A** 8
	- **B** 10
	- **C** 20
	- **D** 6
	- $E = -10$
- **28** The displacement *x* from the origin of a particle travelling in a straight line is given by $x = 2t^3 - 10t^2 - 44t + 112$. The average speed (in m/s) of the particle during the first 4 seconds is:
	- **A** -76
	- **B** -24
	- **C** 4
	- **D** 52
	- **E** 76
- **29** The velocity-time graph shown describes the motion of a particle.

The acceleration of the particle (in $m/s²$) during the first 160 seconds is:

- **A** -40
- **B** -0.25
- **C** 0
- $D = 0.25$
- **E** 40
- **30** The displacement *x* metres from the origin of a particle travelling in a straight line is given by $x = 2 - 2 \cos \left(\frac{1}{2} \right)$ J $\left(\frac{3\pi}{4}, \frac{\pi}{4} \right)$ $\frac{3\pi}{4}t-\frac{\pi}{2}$ $\frac{\pi}{2}$. The maximum displacement of the particle (in m) is **A** –4 **B** -2
C 0 \mathbf{C} **D** 2 **E** 4
- **31** A particle moves in a straight line so that its position *x* cm from a fixed point *O* at time *t* seconds ($t \ge 0$) is given by $x = t^3 - 9t^2 + 24t - 1$. The particle's initial position (in cm) is
	- **A** 0
B 5 **B C** 1
	- \mathbf{D} -1
	- **E** 2
- **32** A particle moves in a straight line so that its position *x* cm from a fixed point *O* at time *t* seconds ($t \ge 0$) is given by $x = t^3 - 9t^2 + 24t - 1$. The particle's initial velocity (in cm/s) is
	- **A** 0
	- **B** 24
	- **C** 1
	- $\begin{bmatrix} D & -1 \\ E & 9 \end{bmatrix}$
	- **E**

33 A ball is dropped vertically, hits the ground and bounces vertically upwards to its original height. It continues bouncing, returning to its original height after each bounce. The velocity-time graph that best represents the ball's motion from when it is dropped until it hits the ground for the second time is

- **34** A body is projected up from the ground with a velocity of 30 m/s. Its acceleration due to gravity is -10 m/s^2 . The maximum height (in m) reached by the body is
	- **A** 90
	- **B** 30
	- **C** 6
	- **D** 45
	- **E** 3
-

35 A particle moves in a straight line. At time *t* seconds its displacement from a fixed origin is *x* metres and its velocity is *v* m/s. Given that $v = \sqrt{16x - 2x^2}$, the acceleration of the particle in m/s² when $x = 2$ is:

- **A** 0
- **B** 2
- **C** 4
- **D** 6
- **E** 8
- **36** The displacement *x* from the origin of a particle travelling in a straight line is given by $x = 2t^3 - 10t^2 - 44t + 112$. The acceleration (in m/s²) at time
	- $t = 3$ seconds is:
	- **A** -24
	- **B** -16
	- **C** 0
	- **D** 16
	- **E** 24

37 A particle moves with velocity ν m/s as indicated in the velocity-time graph.

The distance, in metres, travelled by the particle in the first 4 seconds is:

- **A** 10
- **B** 15
- **C** 20
- **D** 25
- **E** 30

38 The following is the velocity-time graph of a racing car over a short course.

Which one of the following could be the acceleration-time graph of the car's motion?

39 This velocity-time graph represents the motion of a ball that is thrown vertically upwards from a high balcony and then falls to the ground below. The air resistance is negligible.

The height in metres of the balcony above the ground is:

- **A** 11.25
- **B** 15
- **C** 20
- **D** 25
- **E** 31.25

Short-answer questions (technology-free)

- **2** Solve for *x* the equation 2 sin (2*x*) cos (2*x*) = cos (2*x*) for $x \in [0, \pi]$.
- **3 a** On the same set of axes, sketch the graphs of
	- *f* : $[0, 2\pi] \rightarrow R$, $f(x) = \sin x$ and $g: [0, 2\pi] \rightarrow R$, $g(x) = \cos x$.
	- **b** Find the coordinates of the points of intersection of the graphs of $y = f(x)$ and $y = g(x)$.
	- **c** Hence find $\{x: \sin x < \cos x, 0 \le x \le 2\pi\}.$
- **7** Give a vector of magnitude 4 in the direction of vector $\mathbf{i} 2\mathbf{j} + 5\mathbf{k}$.
- **9** Are the vectors $\mathbf{a} = 2\mathbf{i} + \mathbf{j} 2\mathbf{k}$, $\mathbf{b} = \mathbf{i} + \mathbf{j} \mathbf{k}$ and $\mathbf{c} = -2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$ linearly independent? Prove your result.
- **10** *OAB* is an isosceles triangle with *OA* = *OB*. *M* is the midpoint of *AB*. Let $\overrightarrow{OA} = a$ and $\overrightarrow{OB} = b$. Use a vector proof to show that *OM* is perpendicular to *AB*.
- **11** Let *A* be the point (1, 2, 1) and let *B* be the point (4, 2, –1).
	- **a** Find the point on *OB* which is closest to *A*.
	- **b** What is the shortest distance between *A* and *OB*?
- **12** For vectors $a = i + 3j$ and $b = 2i j$ describe, through a cartesian equation, the set of points with position vector $\mathbf{r} = x\mathbf{i} + y\mathbf{j}$ such that: **a** $|r-a|=|r-b|$

$$
b \qquad r \cdot (r-a) = 0
$$

- **13** Solve the equation cosec $(2x) = -\sqrt{2}$, for $x \in [0, 2\pi]$.
- **14** Find the exact value of
	- **a** $\sin \left($ J $\tan^{-1}\left(\frac{3}{4}\right)$ ſ .) $\left(\frac{3}{2}\right)$ 4 **b** $\cos\left(\frac{1}{2}\right)$ J $\tan^{-1}\left(\frac{5}{12}\right)$ ſ J $\left(\frac{5}{12}\right)$.

15 Sketch the graph of
$$
y = \sec\left(2x - \frac{\pi}{3}\right)
$$
, for $x \in [-\pi, \pi]$.

16 Sketch the graph of $y = cos^{-1}(x + 4)$.

17 **a** Given that
$$
\sin (\theta + \alpha) = \lambda \sin (\theta - \alpha)
$$
 show that $\tan \theta = \frac{(\lambda + 1) \tan \alpha}{\lambda - 1}$.

b If $\lambda = 2$ and $\alpha = \frac{\pi}{3}$ $\frac{\pi}{3}$, solve the equation sin $(\theta + \alpha) = \lambda \sin (\theta - \alpha)$ for θ where $-2\pi \leq \theta \leq 2\pi$.

18 If $\sin A = \frac{12}{13}, \frac{\pi}{2}$ $\frac{\pi}{2} < A < \pi$, and cos $B = \frac{-4}{5}$ $\frac{-4}{5}$, $\pi < B < \frac{3\pi}{2}$ $\frac{\pi}{2}$, find the exact value of $\cos (A - B)$.

19 For each of the following, find
$$
Arg(z_1z_2)
$$
 and $Arg(z_1) + Arg(z_2)$.

a
$$
z_1 = \operatorname{cis}\left(\frac{\pi}{4}\right)
$$
 and $z_2 = \operatorname{cis}\left(\frac{\pi}{3}\right)$
\n**b** $z_1 = \operatorname{cis}\left(\frac{-2\pi}{3}\right)$ and $z_2 = \operatorname{cis}\left(\frac{-3\pi}{4}\right)$
\n**c** $z_1 = \operatorname{cis}\left(\frac{2\pi}{3}\right)$ and $z_2 = \operatorname{cis}\left(\frac{\pi}{2}\right)$

20 For the transformation $z \rightarrow z + 2$, sketch the image of each of the following sets of points on an Argand diagram.

- **a** $|z| = 3$ **b** Arg $(z) = \frac{\pi}{3}$
- c $\frac{-\pi}{3}$ $\frac{-\pi}{3} \leq \text{Arg}(z) \leq \frac{\pi}{3}$ 3
- **d** $|z (1 + i)| = |z 2|$

21 a If $0 < \text{Arg}(z) < \frac{\pi}{2}$, show that Arg $(1 - z) = -\pi + \text{Arg}(z - 1)$.

b If
$$
\frac{-\pi}{2} < \text{Arg}(z) < 0
$$
, show that $\text{Arg}(1 - z) = \text{Arg}(z - 1) + \pi$.

22 Find the locus defined by arg $(z + i) - \arg(z + 1) = \frac{\pi}{2}$.

- **23** Shade the region of the complex plane defined by $\{z: |z 1 + i| \ge 4\}.$
- **24** For the equation $P(z) = z^3 + (3 2i)z^2 + z + 3 2i$:
	- **a** show that $-3 + 2i$ is a solution of the equation $P(z) = 0$
	- **b** find all the solutions of the equation $P(z) = 0$.

25 The complex number $z = \sqrt{2}$ cis θ is shown on the Argand diagram below. Plot and label the complex numbers *u*, *v* and *w* on the same diagram, where $u = z^2, v = \frac{1}{z}$ $\frac{1}{z}$ and $w = z^2 + \frac{1}{z}$ $\frac{1}{z}$.

26 Shade the region of the complex plane defined by $\{z: iz - i\overline{z} < 3\}.$

27 Find the equation of the tangent to the ellipse with equation $\frac{x^2}{4}$ $\frac{x}{4} + y^2 = 1$ at the point(s) at which **a** $x=2$

b $x=0$ **c** $x = 1$.

$$
28 \t\t \text{If } f(x) = \log_e(\sin x), \text{ find } f''(x).
$$

29 The shaded region is rotated around the *x*-axis to form a solid of revolution. Find an expression for the volume of the resultant solid.

30 **a** Show that
$$
\frac{d}{dx}(\sin^{-1}(\sqrt{2x})) = \frac{\sqrt{2}}{2\sqrt{x-2x^2}}
$$
.
b Hence find the exact value of $\int_{0.25}^{0.5} \frac{1}{\sqrt{x-2x^2}} dx$.

31 Find the area of the region bounded by the two curves $y = 4x^2 + 2x$ and $y = -2x^2 + x + 1$.

32 Verify that $y = ae^{kx^2}$ is a solution to the differential equation $x \frac{d^2y}{dx^2} - (2kx^2 + 1) \frac{dy}{dx} = 0.$

33 Solve the differential equation $(x + 1)^2 \frac{dy}{dx} = 1$ where $y = 2$ when $x = 0$.

- **34** Find the values of *a* and *b* if $y = a \cos(2x) + b \sin(2x)$ satisfies the differential equation $\frac{d^2y}{dx^2} - \frac{dy}{dx} + 2y = \cos(2x) + \sin(2x)$.
- **35** Solve the differential equation $f'(x) = \frac{3x}{\sqrt{x^2 + 1}}$, given that $f(0) = 2$.
- **36** A tank contains 50 litres of a salt solution which contains 40 grams of dissolved salt. Water runs into the tank at the rate of 1.5 litres/minute and the mixture is kept uniform by stirring. The mixture then runs out at the same rate as the water runs in. If *m* grams of salt remain after *t* minutes, express:
	- **a** $\frac{dm}{dt}$ in terms of *m*
	- **b** *m* in terms of *t*.

37 Solve the differential equation $\frac{dy}{dx} = \frac{2}{1-1}$ $\frac{2}{1-x^2}$ given that $y = 0$ when $x = 0$.

38 Sand is poured into a conical heap so that the radius length *r* cm is always $\frac{3}{4}$ of the height *h* cm. The volume of sand in the heap is $V \text{ cm}^3$ at time *t* minutes.

- **a** Express *V* in terms of *h*.
- **b** If the height is increasing at the rate of 2 cm/min, express $\frac{dV}{dt}$ in terms of *h*.

39 The velocity, v m/s, of a particle moving in a line is given by $v = e$ *x* $t^2 + 4$, $t \ge 0$, where *x* metres is the position of the particle at time *t* seconds.

- **a** Find the acceleration of the particle in terms of *x*.
- **b** Find, correct to one decimal place, the time it takes for the particle to travel 20 metres.
- **40** An object is thrown vertically upwards from the top of a building, 50 metres above ground level. The object takes 10 seconds to reach the ground.
	- **a** Find the initial speed.
	- **b** Find the maximum height reached, correct to one decimal place.
- **41** A particle moves in a line. At time *t* seconds, $t \ge 0$, its displacement from a fixed origin O is x metres and its acceleration, a m/s², is given by $a = 2t - \cos t$. If the particle starts at the point where $x = 3$, with a velocity of 2 m/s towards *O*, express *x* in terms of *t*.

42 A car travelling at 24 m/s overtakes a truck travelling at a constant speed of 17 m/s along a straight road. *T* seconds later, the car decelerates uniformly to rest. The truck continues at constant speed and it passes the car at the instant the car comes to a stop. This is exactly 60 seconds after the car had passed the truck.

The velocity-time graph representing this situation is shown above. Find *T*.

- **43** A particle is moving in a line so that its displacement, *x* m, from a fixed origin *O*, at time, *t* seconds, is given by $x = \cos(2t) + 4 \cos t$, $0 \le t \le 2\pi$. If *v* m/s is the velocity and a m/s² is the acceleration at time *t*, find at what time(s) the particle
	- **a** is at rest
	- **b** has zero acceleration.
- **44** Find the cartesian equation for the graph represented by the vector equation $r(t) = \sec(t) i + (1 + \tan(t))j, t \in$ J $\left(0,\frac{\pi}{2}\right)$ $\frac{\pi}{2}$.
- **45** The following vector equations each represent the position of a particle at time $t, t \geq 0$. For each equation:
	- **i** find the corresponding cartesian equation stating domain and range
	- **ii** sketch the path of the particle indicating the initial position and the initial direction of motion.

$$
a \qquad r(t) = \cos\left(t + \frac{\pi}{4}\right)\mathbf{i} + \sin\left(t + \frac{\pi}{4}\right)\mathbf{j}
$$

b
$$
r(t) = (3-t)\mathbf{i} + (t^2 + 2t)\mathbf{j}
$$

$$
r(t) = \tan(t) \, \mathbf{i} + \sec(t) \, \mathbf{j}, \, t \in \left[0, \frac{\pi}{2}\right)
$$

46 For each of the following vector equations:

- **i** find the corresponding cartesian equation stating domain and range
- **ii** sketch the relation.

a
$$
r(t) = (3-t)i + 4(t+1)j, t \in R
$$

b
$$
\mathbf{r}(t) = \cos(t)\,\mathbf{i} + (1 - \sin(t))\,\mathbf{j}, t \in R
$$

c $r(t) = \sin^2(\theta)$ ſ J $\left(\frac{\pi t}{2}\right)$ $\left(\frac{\pi i}{2}\right)\mathbf{i} + 2\cos^2\left(\frac{\pi i}{2}\right)$ ſ J $\left(\frac{\pi t}{2}\right)$ $\frac{\pi}{2}$ **j**, $t \in [0, \infty)$

Extended-response questions

3 A cuboid is positioned on level ground so that it rests on one of its vertices, *O*.

A cuboid is postuoned on level ground so that it rests on d
\n
$$
\overrightarrow{OA} = 3\mathbf{i} - 4\mathbf{j} - \mathbf{k}, \overrightarrow{OB} = \mathbf{i} + 2\mathbf{w}\mathbf{j} - 5\mathbf{k}, \overrightarrow{OC} = x\mathbf{i} + y\mathbf{j} + 5\mathbf{k}.
$$

- **a i** Find *OA* \overrightarrow{c} \overrightarrow{OB} in terms of *w*.
	- **ii** Hence find the value of *w.*
- **b i** Use the fact that *OA* is perpendicular to *OC* to write an equation relating *x* and *y*.

O

- **ii** Find another equation relating x and y and hence find the values of *x* and *y*.
- **c** Hence find the exact volume of this cuboid.
- **4** In the figure *OAB* is a triangle with *D* the midpoint of *AB*. Let *OA* \Rightarrow $= a$ and *OB* \overrightarrow{c} = *b*. *G* is a point on *OD* such that *OG* \overrightarrow{c} $=\frac{2}{3}$ $rac{2}{3}\overrightarrow{OD}$.

- **a** Find \overrightarrow{OG} in terms of *a* and *b*.
- **b** Find \overrightarrow{GA} in terms of *a* and *b*.
- **c** Find *GA* \Rightarrow \overrightarrow{OG}
- **d i** If GA is perpendicular to *OG* show that angle *BOA* has
- magnitude θ° where $\cos \theta = \frac{|\mathbf{b}|^2 2|\mathbf{a}|^2}{|\mathbf{a}||\mathbf{b}|^2}$ $|a||b|$
- **ii** If $|b| = \sqrt{3} |a|$, give the magnitude of angle *BOA* correct to two decimal places.

5 *OACB* is a square with
$$
\overrightarrow{OA} = aj
$$
 and $\overrightarrow{OB} = ai$. *M* is the midpoint of *OA*.

- **a** Find, in terms of *a*
	- **i** *OM* \overrightarrow{c}
	- **ii** \overrightarrow{MC} .
- **b** *P* is a point on *MC* such that *MP* \rightarrow $= \lambda \overrightarrow{MC}$. Find \overrightarrow{MP} , \overrightarrow{BP} and \overrightarrow{OP} in terms of λ and *a*.
- **c** If *BP* is perpendicular to *MC*
	- **i** find the value of λ and also find $|\vec{BP}|$, $|\vec{OP}|$ and $|\vec{OB}|$. Comment.
	- **ii** if $\theta = \angle PBO$, evaluate cos θ .
- **d** If $|\overrightarrow{OP}| = |\overrightarrow{OB}|$ find the possible values of λ and illustrate these two cases carefully.

In the diagram, *OA* \overrightarrow{c} = *aj*, *OB* \overrightarrow{c} $= ai$ and *BP* is perpendicular to *MC* where *M* is the midpoint of *OA*. *PX* \Rightarrow = *ak*. *Y* is a point on *XC* such that *PY* is perpendicular to *XC*.

e Find \overrightarrow{OY} .

$$
N
$$

$$
N
$$

$$
N
$$

$$
Re(z)
$$

a If $|z-1|=|z-v|$, show that the locus of *z* is given by the relation $2vy = 2x + y^2 - 1$ where $z = x + iy$.

b Show that
$$
u = \frac{v^2 + 1}{2} + vi
$$
.

c As *v* moves along the positive Im (*z*)-axis, *u* moves along a curve. Find the cartesian equation of this curve.

- **13** The volume, *v* litres, of oil in an irregularly shaped tank, when the oil depth is *h* metres, is given by $v = 8000h \tan^{-1} h$.
	- **a i** Find the exact volume of oil in the tank, in litres, when the oil depth is 1 metre.
		- **ii** Find the oil depth, correct to the nearest centimetre, when the volume is 10 000 litres.

The tank is initially empty. Oil is then poured into the tank at a constant rate of 2000 litres per minute.

- **b** Find, in terms of *h*, an expression for the rate at which the oil depth is increasing, in metres per minute, when the depth is *h* metres.
- **c i** Write a definite integral, the value of which gives the time it takes in minutes for the oil depth in the tank to reach $\sqrt{3}$ metres.
	- **ii** Show that the exact time taken for the oil depth to reach $\overline{3}$ metres is $\frac{4\pi}{\sqrt{3}}$ minutes.
- **14** In a small town of population 1000, the rate of infection of a type of influenza is modelled by the differential equation $\frac{dN}{dt} = kN(1000 - N)$ where *N* is the number of people infected after *t* days and *k* is an unknown constant.
	- **a** If the rate of infection is 100 people per day when the number already infected is 500, show that the differential equation can be expressed as *dt* $\frac{dt}{dN} = \frac{2500}{N(1000 - 1)}$ $\frac{2566}{N(1000-N)}$.
	- **b** Express *t* in terms of *N*, given that initially 10 people are infected.
	- **c** By the start of which day will the number of people infected first exceed 750?
- **15** A helicopter is hovering 25 m above the ground and drops a package of food to people below. The acceleration a m/s² of this package is given by $a = 9.8 - 0.05v^2$, where *v* m/s is the vertical speed at time *t* s. If *x* metres is the distance fallen at time *t* s, find
	- **a** the terminal velocity of the package
	- **b** the speed of the package when it hits the ground, in m/s, correct to one decimal place
	- **c** the time it takes the package to reach the ground, in seconds, correct to one decimal place.
- **16** After brakes are applied in a car, under the influence of ABS (anti-lock brakes), the car comes to rest, and two different models have been conjectured. In a controlled experiment the brakes are applied when the car is moving at 25 m/s.
	- **a** In the first model, the acceleration, in m/s^2 , is given by

 $a = \frac{-52}{(t+1)}$ $\frac{32}{(t+1)^3}$, $t \ge 0$, where *t* seconds is the time since the brakes were applied.

- **i** Express *v* in terms of *t*, where *v* m/s is the speed at time *t*.
- **ii** Find the time taken for the car to come to rest using this model.
- **b** In the second model, $a = \frac{-(900 + v^2)}{60}$.
	- **i** Express *t* in terms of *v* for this situation.
	- **ii** Find the time taken for the car to come to rest using this second model.
- **c** What model takes longer, and by how much?

17 A dragster racing car accelerates uniformly over a straight line course and completes a 'standing' (that is, starting from rest) 400 metres in 8 seconds.

- **a i** Find the acceleration, in m/s^2 , of the dragster over 400 metres.
	- **ii** Show that the dragster reaches a speed of 100 m/s at the end of the 400 metre course.

At the 400 metre mark, the dragster stops accelerating. At this instant, the dragster's brakes are applied and, in addition, a small parachute opens at the rear to slow the car down. Due to these factors the deceleration of the dragster

during this stage of the motion is $\frac{5000 + 0.5v^2}{400}$ m/s².

- **b i** Show that the differential equation relating *v* to *x*, where *v* m/s is the velocity of the dragster *x* metres beyond the 400 metre mark, is $\frac{dv}{dx} = \frac{-(10^4 + v^2)}{800v}$ $\frac{180}{800v}$.
	- **ii** Hence find, to the nearest metre, the distance the dragster takes to stop from the instant the brakes are applied.
- **c** Use calculus to find the time, in seconds, taken to bring the dragster to rest from the 400 metre mark.

Answers to Revision exercises 1

Answers to multiple-choice questions

Answers to short-answer (technology-free) questions

Essential Specialist Mathematics Teacher CD-ROM **Revision exercises 1**

Answers to extended-response questions

Essential Specialist Mathematics Teacher CD-ROM **Revision exercises 1**

d $6 + 8i$

