Stem Cells: Hope, Hype and Progress

Susie Nilsson

Biomedical Manufacturing, CSIRO

Australian Regenerative Medicine Institute, Monash University

Humans come in all different types...

What are stem cells?

- the body is made up of about 200 different kinds of specialised cells such as muscle cells, nerve cells, fat cells and skin cells
- all cells in the body come from stem cells
- a stem cell is a cell that is not yet **specialised**
- the process of **specialisation** is called **differentiation**
- once the differentiation pathway of a stem cell has been decided, it can **no longer** become another type of cell on its own

Stem cells are not one cell type.

Stem cells that can become <u>every</u> type of cell in the body are termed **totipotent**

Germ stem cells (totipotent)

Stem cells that can become <u>many</u> types of cells in the body are termed **pluripotent**

Stem cells that can become only <u>a few</u> types of cells are termed **multipotent**

Embryonic stem cells (pluripotent)

Tissue stem cells (multipotent)

Stem cells

Why are stem cells special?

Stem cells can:

- Renew their population to make more stem cells
- differentiate into specialised cell types

Tissue stem cells

- often known as **adult** stem cells
- also includes stem cells isolated from fetal and cord blood
- reside in most tissues of the body where they are involved in repair and replacement

Bone marrow

Lung

- generally very difficult to isolate
- already used to treat patients (haematological malignancies, diseases of the immune system)

Haemopoietic Stem Cells (HSC)

The most extensively studied and well understood population of adult stem cells in vertebrates

Human HSC isolated from Bone Marrow

HSC: Hierarchical Adult Stem Cells

HSC and Bone Marrow Transplantation: Adult stem cells – the potential

Adrenoleukodystrophy Acute Lymphoblastic Leukemia Acute Mast Cell Leukemia **AMFAcute Myelofibrosis Acute Myelogenous Leukemia** Ataxia-Telangiectasia Acute Undifferentiated Leuk-Mo **Beta-Glucuronidase Deficiency** Bare lymphocyte Syndrome **Breast Cancer** Beta Thalassemia Major Cartilage-Hair Hypoplasia Chronic Granulomatous Disease Chronic Lymphocytic Leukemia **Chronic Myelogenous Leukemia** Chronic Myelomonocytic Leukemia **Central Nervous System Tumors** Di George Syndrome **Essential Thrombocythemia Ewings Sarcoma** Fanconi Anemia Gaucher's Disease

Glanzmanns Thrombasthenia Hairv Cell Leukemia Histiocytosis - X Hodgkin's Lymphoma Hemophagocytosis Hunter Syndrome (MPS-II) Hurler Syndrome (MPS-IH) I-Cell Disease Immune Deficiency + Neutropen Juvenile Chronic Myelogenous Kostmann's Agranulocytosis Krabbe Disease Leukocyte Adhesion Deficiency Lesch-Nyhan Lysosomal Storage Disease Maroteaux-Lamy (MPS-VI) **Mvelodysplastic Disorder** Myelofibro Myeloid Metaplasia Multiple Myeloma Morquio (MPS-IV) Mucopolysaccaridosis Neiman-Pick Disease Neuroblastoma

Non-Hodgkins Lymphoma

Other Combined Immunodeficiency Osteopetrosis Plasma Cell Leukemia **Prolymphocytic Leukemia** Paroxysmal Nocturnal Hemoglobinuria Polycythemia Vera Refractory Anemia (RA) **Refractory Anemia-Excess Blasts** Pure Red Cell Aplasia Severe Aplastic Anemia Sanfillippo (MPS-III) Sickle Cell Anemia Severe Combined Immunodeficiency SCID with ADA Small Cell Lung Cancer Absence of T&B Cells SCID Absence of T, Normal B SCID Wiskott Aldrich Syndrome Waldenstroms Macroglobulinemia X-Linked Lymphoproliferative

Adult stem cells – limitations/problems

• Rare, often difficult to identify

Stem cells have not been identified in all adult tissues/organs Location of stem cells unknown in most tissues Difficult to isolate pure populations Problems of accessibility

• Conditions for growing adult stem cells *in vitro* have not been established for most stem cell types

Poor growth in vitro; limited lifespan Loss of stem cell properties due to spontaneous differentiation Potential difficulties in obtaining sufficient numbers for therapy

 Effective means of transplanting adult stem cells in a clinical setting only exist for a limited number of stem cell types
Await developments in tissue engineering and cell delivery systems
Immune-mediated transplant barriers

Embryonic stem cells (ES cells)

- excess embryos from IVF clinics
- donated at the wish of and with full consent of parents

Embryonic stem cell derivation in Australia

CSIRC

Induced pluripotent stem cells (iPS)

Starting cells from donor tissue

Induced change in gene expression

pluripotent stem cells

- derived from adult cells in 2007 - very recent discovery!
- can be grown indefinitely in culture in an undifferentiated state
- similar properties to embryonic stem cells– pluripotent

iPS – continued

- Fewer ethical/legal problems because creation of iPS cells does not require the destruction of embryos
- As with embryonic stem cells, large numbers of cells can be grown and used to create disease - or patient - specific stem cell lines
- But many questions remain to be explored about iPS cells:
 - are they really equivalent to human embryonic stem cells?
 - are they stable over a long time?
 - will they be safe for treatment?
- Australian research into understanding iPS cells is ongoing

tilli tanty csiro

Requirements for ES/iPS therapies:

- Must EFFICIENTLY make the required mature cell type
- Mature cells must be FUNCTIONALLY EQUIVALENT to endogenous cells
- Mature cells must be available in SUFFICIENT QUANTITIES and PURITY for therapeutic use
- Problems of IMMUNE REJECTION must be overcome
- Transplanted cells must be SAFE free of INFECTIOUS agents and remaining stem cells that can cause TUMOURS

STEM CELL therapies?

- Blood stem cell transplants using bone marrow, blood or umbilical cord blood have been in clinical use for >50yrs
- Mesenchymal stem cell therapies to assist bone and cartilage repair and blood stem cell grafting in trials
- Trials of nerve sheath cells (oligodendrocytes) grown from embryonic stem cells for acute spinal cord injuries
- Trials of retinal pigment cells grown from embryonic stem cells for some forms of blindness are ongoing
- More trials will continue to start...

Some ethical questions to ponder re: ES and iPS Stem Cells

- are frozen fertilised embryos considered a life?
- couldn't these embryos be used for research because they are to be destroyed anyway?
- do the ends justify the means?
- given that iPS cells can potential make all cells in the body, can this technology be abused? Could you clone someone using iPS cells?

Arguments for:

- ES and iPS cells have the potential to treat many terrible diseases and save many lives
- Frozen embryos are not life as they were made in a tube and are frozen in liquid nitrogen
- Informed consent was obtained from the couple for the extra embryos to be donated to research
- Most couples who have successfully used in vitro fertilisation (IVF) want their extra embryos used for research not destroyed

Arguments against:

- Life begins at conception whether in a women or a test tube
- ES research involves the destruction of life and no life should be destroyed even if it is to save another
- Frozen embryos have successfully been implanted into women giving rise to healthy life

What makes stem cells so valuable?

Modified from Keller & Snodgrass, Nat Med 1999

csiro

What about cloning? Has cloning got anything to do with stem cell research?

Dolly the Sheep

Snuppy the Puppy

Cloning

- Dolly was created by **somatic cell nuclear transfer**
- take an egg, remove its nucleus the DNA and add a new nucleus of a cell from the animal to be cloned
- the reconstructed egg is treated with a jolt of electricity and put in a dish to divide. The cluster of cells is either transplanted into a surrogate mother's uterus (**reproductive cloning**) or the inner cell mass removed and stem cells cultured (**therapeutic cloning**)
- reproductive cloning in humans is illegal in Australia and punishable by 15 years in prison

Stem cells Tourism

- The promise of stem cells has caused multiple overseas clinics to offer unproven and experimental treatments for a high cost
- This has caused a new phenomenon: **Stem Cell Tourism**
- Stem Cells Australia receives daily enquiries regarding unregulated overseas experimental stem cell treatments

What's the problem?

- Unregulated clinics with unproven methods often charging large sums of money
- Lack of clinical trials to test safety and efficiency
- Patients can return home with infections, more pain, no medical records or follow-up care and in some cases cancer
- Need public education to increase knowledge of these issues to stop stem cell tourism for vulnerable patients

Stem cell tourism:

promising instant results for incurable diseases

Diseases treated with our stem cell t

The Xcell-Center clinic currently treats patient llowing (degenerative diseases:

- ALS
- Alzheimer's disease
- Cardiovascular diseas
- Cerebral Palsy
- ype 2) Diabetes mellit
- Erectile dysfund
- Failed ovndrome or
- Macu ar dege
- Multin
- Osteoarthritis
- Parkinson's disease
- Spinal cord injuries
- Stroke

have obvious improvement in 5 weeks likecell.cn FBI Hunt Pair Who Sold Mum £15,000 Multiple Sclerosis 'cure'

stem cell therapy

for epilepsy, seisure, patient will

Jun 8 2008 Exclusive by Raymond Hainey

MULTIPLE sclerosis victim Janice Reed thought her prayers had been answered when she read about a pioneering cure that injected sufferers with stem cells.

<u>Coronary Artery Disease</u>

"Forever grateful for my born-again heart"- Adult Stem Cell patient

Stem cell tourism:

promising instant results for incurable diseases

Cells4health

Stem cell tourism:

promising instant results for incurable diseases

Haemopoietic stem cells (HSC) and their microenvironment

Cellular Megakaryocytes Endothelial

CSIRC

Extracellular

Matrix Cytokines

HSC for stem cell transplants

Problem: Peripheral blood HSC are <u>extremely</u> rare

Solution: Stem cell mobilisation agents increase blood HSC numbers

Clinical mobilisation agents:

G-CSF (Filgrastim; marketed as Neupogen[®])

• Stimulates division and mobilisation of marrow cells and HSC

Mechanism:

- activation of proteases
- downregulates expression of adhesion proteins

Drawbacks:

- bone pain, splenomegaly, alters bone marrow microenvironment
- repeated daily doses over 4-5 days

AMD3100 (Plerixafor; marketed as Mozobil[®])

- Selective for one receptor
- inhibits a key HSC microenvironment interaction
- Rapid mobilisation of HSC and marrow cells
- Clinical use is dependent on G-CSF

HSC mobilisation using BOP

Malignant blood stem cells

Chemosensitisation:

LSC migrate to and anchor near bone LSC make a protein that makes them stop going through cell division Chemotherapy fails to kill LSC

Dislodging LSC from microenvironment drives them into cell cycle and makes them susceptible to chemo

Chemosensitisation using BOP:

