

Chemistry Teach Yourself Series

Topic 5: Electrolysis

 A: Level 14, 474 Flinders Street Melbourne VIC 3000 **T:** 1300 134 518 **W:** tssm.com.au **E:** info@tssm.com.au

Contents

Electrolysis

What is electrolysis?

As it appears in Unit 4

Example 1 Molten NaCl solution

NaCl(l)

Electrodes are placed in a NaCl solution. The electrodes are connected by a wire and a voltmeter. Time passes but **NO** reaction occurs. This is no surprise as sodium ions and chloride ions are relatively stable. **Point of this**: Not all solutions and electrodes make galvanic cells.

power supply

However, if the voltmeter is replaced by an **external power supply** a reaction **DOES** occur.

 The power supply causes one electrode to be positive and the other to be negative.

 Due to the power supply, electrons travel from the positive to the negative electrode.

 The sodium ions, **Na⁺** are attracted to the **negative** electrode. The chloride ions, CI are attracted to the **positive** electrode.

Half equations

positive electrode $2CI \rightarrow Cl_2 + 2e$ **negative** $Na^+ + e \rightarrow Na$

Overall equation: $2Na^{+} + 2Cl^{-} \rightarrow 2Na + Cl_{2}$

Products sodium metal and chlorine gas

The power supply causes a reaction to occur that was not going to happen.

Why bother? Because the products, sodium and chlorine in this case, are very difficult to make any other way.

Electrolysis: Redox reactions that require an **external power supply**.

- Purposes: 1. To obtain products that might be difficult to produce.
	- 2. To electroplate metals onto surfaces.

Example 2

Electrolysis of CaS(l) molten solution

(Note: Example 1 and 2 refer to molten solutions. A molten solution is formed when an ionic substance is heated until it melts. It contains no water)

 Ca^{2+} ions move to the negative electrode and $S²$ ions to the positive.

Half equations

 $Ca^{2+}(l) + 2e \rightarrow Ca(l)$ reduction => cathode $S^2(1) \rightarrow S(1) + 2e$ oxidation => anode

 $Ca^{2+}(l) + S^{2-}(l) \rightarrow Ca(l) + S(l)$ **Products**: calcium and sulfur

- **1.** A molten solution of magnesium bromide, $MgBr₂$ is electrolysed. Draw this cell showing the
	- a. direction of electron flow
	- b. direction of ion movement
	- c. relevant half equations
	- d. overall equation
- **2.** The cells covered so far have been molten solutions. Explain what a molten solution of copper (II) iodide is.

 \mathcal{L}_max , and the contribution of t

 $\mathcal{L}_\mathcal{L} = \{ \mathcal{L}_\mathcal{L} = \{ \mathcal{L}_\mathcal{$

 \mathcal{L}_max , and the contribution of t

 \mathcal{L}_max , and the contribution of t

- **3. Fact 1**: Sodium can react with chlorine to produce electrical energy in a galvanic cell. **Fact 2**. Sodium ions will not react readily with chloride ions to produce electricity.
	- **a.** Use your knowledge of these two elements to explain the reactivities evident in Fact 1 and Fact 2.

 $_$, and the contribution of the contribution of the contribution of the contribution of \mathcal{L}_max

 $_$, and the contribution of the contribution of the contribution of the contribution of \mathcal{L}_max

 $_$, and the contribution of the contribution of the contribution of the contribution of \mathcal{L}_max

- **b.** Explain why both reactions are considered redox reactions.
- **c.** Explain which reaction will suit a galvanic cell and which an electrolytic cell.
- **4.** Fill in the blanks.

Using the Electrochemical series

As it appears in Unit 4

The cells in examples 1 and 2 could have been analysed using the electrochemical series.

An electrolytic cell is possible if there is an **oxidant and a reductant**, and the **oxidant is placed lower down the table than the reductant**. Both of these cells meet this criteria.

Reactions occurring

Overall

Note: Cl₂(g) and Na(l) will react spontaneously, hence they represent a galvanic cell, not an electrolytic cell. $Na⁺(1)$ and $Cl⁻(1)$ react in an electrolytic cell.

5. Use the electrochemical series, and the examples above, to fill in a template for the electrolysis of KBr(l).

Species present:

Relevant half equations with species present underlined

Reverse top half equation

Overall equation

6. Given the two half equations below from the electrochemical series

 $Ag^+(aq) + e \rightarrow Ag(s)$ $Cr^{3+}(aq) + 3e \rightarrow Cr(s)$

a. Identify two species that will react together spontaneously to form a galvanic cell.

b. Identify two species that an external power supply can cause to react in an electrolytic cell.

 $\mathcal{L}_\mathcal{L} = \{ \mathcal{L}_\mathcal{L} = \{ \mathcal{L}_\mathcal{$

 $\mathcal{L}_\mathcal{L} = \mathcal{L}_\mathcal{L} = \mathcal{L}_\mathcal{L}$

Aqueous solutions

As it appears in Unit 4

When a saltwater solution is electrolysed the products are very different from sodium and chlorine. Why? **Because water reacts instead**.

Example 1: Electrolysis of **NaCl(aq),** a salt water aqueous solution. **Species present:** Na^+ , Cl and H_2O

Relevant half equations

 $Cl_2 + 2e \rightarrow 2Cl^2$ $O_2(g)$ + 4H⁺(aq) + 4e \rightarrow 2<u>H₂O(l)</u> $2H_2O(1) + 2e \rightarrow H_2(g) + 2OH(g)$ $\overline{Na^+}$ + e \rightarrow Na the strongest oxidant reacts with the strongest reductant

Reverse top half equation

 $2H_2O(1) \rightarrow O_2(g) + 4H^+$ $2H_2O(1) + 2e \rightarrow H_2(g) + 2OH^{-1}$

oxidation: anode : $+ve$ reduction: cathode:-ve

Overall equation

 $6H_2O(l) \rightarrow 2H_2(g) + O_2(g) + 4H^+(aq) + 4OH(aq)$ or more simply $2H_2O(1) \rightarrow 2H_2(g) + O_2(g)$

Products: hydrogen and oxygen gas (not sodium and chlorine)

Therefore, when **solutions are aqueous** the process is still the same:

- \bullet Find the relevant half equations
- The same two half equations for water should be used each time, the half equation at 1.23 V and the half equation at -0.83 V.
- Identify the strongest oxidant and the strongest reductant.
- \bullet Reverse the reductant half equation

Example 2: Electrolysis of NiBr₂(aq)

Species present: Ni^{2+} , Br and H_2O

Relevant half equations $O_2(g)$ + 4H⁺(aq) + 4e \rightarrow 2<u>H₂O(l)</u> $Br_2(1) + 2e$ \rightarrow $2Br$ (aq) $\overline{\text{Ni}^{2+}}$ (aq) + 2e \rightarrow N₁(s) *the strongest oxidant reacts with the strongest reductant* $2H_2\overline{O(1)} + 2e \rightarrow H_2(g) + 2OH(aq)$

Reverse top equation $\frac{2\text{Br}}{2\text{q}}$ \rightarrow $\frac{\text{Br}}{2}$ (1) + 2e oxidation: anode : +ve Ni^{2+} (aq) + 2e \rightarrow Ni(s)

Overall

 $2Br(aq) + Ni^{2+}(aq) \rightarrow Ni(s) + Br_2(l)$

Products: nickel and bromine (water does not react this time)

Review Question

7. Use the format above to predict the products formed in the electrolysis of $\text{ZnI}_2(\text{aq})$

Metals or not metals

As it appears in Unit 4

Electrolysis of NiBr₂(aq) \rightarrow nickel and bromine very different results. Why? Electrolysis of NaCl(aq) \rightarrow hydrogen and oxygen

The water half equation at - 0.83 volts represents the dividing line between easy to produce metals and difficult to produce metals.

All metals placed below the water half equation must be produced through electrolysis of molten solutions

Reactive electrodes

If the electrodes are made from metals, there are further possible reactions but the process of lining up the half equations and picking the strongest oxidant and the strongest reductant is still the same.

Example

Electrolysis of $NiCl₂(aq)$ using a copper anode. **Species present**: Ni^{2+} , Cl^- , H_2O and $Cu(s)$

Relevant half equations

 $Cl_2 + 2e \rightarrow 2Cl_2$ $O_2(g)$ + 4H⁺(aq) + 4e \rightarrow 2H₂O(1) Cu^{2+} (aq) + 2e \rightarrow $Cu(s)$
 Ni^{2+} (aq) + 2e \rightarrow Ni(s) This time the Ni²⁺ ions react with Cu metal

(the strongest oxidant with strongest reductant, $\frac{2H_2O(1)}{2H_2O(1)}$ + 2e \rightarrow H₂(g) + 2OH (aq) $\overline{Na^+}$ + e \rightarrow Na

(the strongest oxidant with strongest reductant)

Reactions occurring $Cu(s) \rightarrow Cu^{2+}(aq) + 2e$ oxidation: anode : +ve $Ni^{2+}(aq) + 2e \rightarrow Ni(s)$ reduction :cathode:-ve

Overall equation $Cu(s)$ + $Ni^{2+}(aq)$ $\rightarrow Cu^{2+}(aq)$ + Ni(s) **Products**: nickel metal and copper ions

Concentrated solutions involving chloride ions

The use of concentrated solutions can lead to unexpected products. **Example**: Electrolysis of NaCl(c) where (c) stands for a **concentrated** solution

Reasons for the change in reaction are

- the solution is **not 1 M**. E^0 values are derived for 1 M solutions
- Cl ions have a bigger negative charge than the dipoles on water, hence they can surround the positive electrode.

The same issue does not arise at the negative electrode because the voltage for sodium is very different from that of water.

Reactions occurring $2Cl$ ⁽aq) $\rightarrow Cl_2(g) + 2e$ $2H_2O(1) + 2e \rightarrow H_2(g) + 2OH(g)$

Overall equation $2H_2O(l) + 2Cl$ (aq) $\rightarrow H_2(g) + Cl_2(g) + 2OH$ (aq)

Products: hydrogen gas, chlorine gas and sodium hydroxide (caustic soda)

Note the products are very useful ones, all obtained from room temperature electrolysis of very inexpensive sea water.

8. Electrolysis is conducted on two different cells, a 0.1 M solution of NaCl and a 5.0 M solution of NaCl

 $\mathcal{L}_\mathcal{L} = \mathcal{L}_\mathcal{L} = \mathcal{L}_\mathcal{L}$

 $\mathcal{L}_\mathcal{L} = \mathcal{L}_\mathcal{L} = \mathcal{L}_\mathcal{L}$

Complete the table provided to show the products formed in each cell.

- **9. a.** Name three metals that can be formed from electrolysis of aqueous solutions
	- **b.** Name three metals that cannot be formed from electrolysis of aqueous solutions

Faraday's Laws

As it appears in Unit 4

The manufacturers of metals such as aluminium want to predict how much aluminium they are likely to produce in any given period. This can easily be done if the number of electrons flowing in the circuit, the electric $\|\cdot\|$, current, is known.

Consider the NaCl cell shown. The half equation is

 $Na⁺ + e \rightarrow Na$

 1 atom of sodium requires 1 electron 7 atoms of sodium requires 7 electrons 1200 atoms of sodium requires 1200 electrons 1 mole of sodium requires 1 mole of electrons

The charge on an electron is 1.60×10^{-19} Coulomb and the number in a mole is 6.02 x 10^{23}

Therefore the charge on **1 mole of electrons** = $1.6 \times 10^{-19} \times 6.023 \times 10^{23} = 96500 \text{ C}$

1 faraday of charge = 96500 C mol^{-1}

Example 1

Calculate the mass of sodium formed when a current of 5.00 amps runs for 3.00 hours Procedure

It = Q \rightarrow **n**(e) = <u>Q</u> \rightarrow **n**(metal) from balanced \rightarrow mass(metal) = **n** x M **96500** equation

$$
Q = I \times t = 5 \times 3 \times 60 \times 60 = 54000 C
$$

 $n(e) = \frac{54000}{0.5500} = 0.560$ mol 96500 $\frac{54000}{25522}$

 $n(Na) = n(e) = 0.560$ *mol* $m(Na) = 0.560 \times 23 = 12.9 g$

Example 2

Calculate the current required to produce 1.00 kg of magnesium from an electrolytic cell in 100 minutes

Procedure is the reverse of above

$$
n(Mg) = \frac{m}{M} = \frac{1000}{24.3} = 41.2 \text{ mol}
$$

\n
$$
n(e) = 2x \ n(Mg) \quad \text{(as Mg}^{2+}) = 2 \text{ x } 41.2 = 82.4 \text{ mol}
$$

\n
$$
Q = n(e) \text{ x } 96500 = 82.4 \text{ x } 96500 = 7.94 \text{ x } 10^6
$$

\n
$$
I = \frac{Q}{t} = \frac{7.94 \text{ x } 10^6}{6000} = 1330 \text{ amps}
$$

- **10.** Calculate the mass of aluminium produced when a current of 4.20 amps runs through an AlCl₃ cell for 24.0 hours
- **11.** Calculate the time required to produce 22.0 kg of calcium from a cell where the current is 12.0 amps

Complex question

10 mole of electrons is passed through the circuit below. The cells are all connected in series. Calculate the mass of each metal produced in each cell.

As the cells are connected in series, the same number of mole of electrons passes through each cell. The metals have different oxidation states, so the number of mole of metal obtained will differ.

 $Ag^+(aq) + e \rightarrow Ag(s)$ $Cu^{2+}(aq) + 2e \rightarrow Cu(s)$ $2H_2O(l) + 2e \rightarrow H_2(g) + 2OH(aq)$ *(note: water reacts instead of aluminium)*

10 mol electrons therefore gives

10 mol of silver **5 mole** of copper and **no** aluminium

Points to note:

- The same number of mole of electrons passes through each electrode
- Reactive metals are not produced in aqueous solutions
- Metal ions are often chosen to reflect oxidation states of $+1$, $+2$ and $+3$

^e Solutions to questions

1. A molten solution of magnesium bromide, $MgBr₂$ is electrolysed.

positive electrode $2\text{Br}(l) \rightarrow \text{Br}_2(l) + 2e$ **negative** $Mg^{2+}(l) + 2e \rightarrow Mg(l)$

 overall $2Br(l) + Mg^{2+}(l) \rightarrow Br_2(l) + Mg(l)$

- **2.** Copper (II) iodide crystals are heated in a crucible until they melt to form a thick liquid.
- **3. Fact 1**: Sodium can react with chlorine to produce electrical energy in a galvanic cell. **Fact 2**. Sodium ions will not react readily with chloride ions to produce electricity.
	- **a.** sodium atoms have one electron in the outer shell. They are reactive because they are trying to lose this electron. Chlorine atoms require one electron for their outer shell. It is an obvious arrangement for them to swap electrons with sodium. Once the ions are formed that have complete outer shells, it will be difficult to return to the elemental form.
	- **b.** Both reactions involve the transfer of electrons
	- **c.** Galvanic cell reaction of sodium and chlorine Electrolytic cell – reaction of $Na⁺$ and Cl ions
- **4.** In electrolysis, an external power supply is used. Electrons are pushed to the negative electrode. When a reaction occurs, oxidation will be at the anode, which is the positive electrode. If several reactions are possible, the strongest oxidant will react with the weakest reductant.
- **5. Species present**: K^+ , Br

Relevant half equations

 $Br_2(l) + 2e \rightarrow 2Br(l)$ $K^+(l) + e \rightarrow K(l)$

 Reverse top half equation $2Br(l) \rightarrow Br_2(l) + 2e$ $K^+(l) + e \rightarrow K(l)$

 Overall equation $2Br(l) + 2K^{+}(l) \rightarrow Br_{2}(l) + 2K(l)$

6. a. Ag^+ , $Cr(s)$

b. Ag(s), $Cr^{3+}(aq)$

7. Use the format above to predict the products formed in the electrolysis of $\text{ZnI}_2(\text{aq})$ **Relevant half equations**

 $O_2(g)$ + 4H⁺(aq) + 4e \rightarrow 2<u>H₂O(l</u>) $I_2(1) + 2e \rightarrow 2I_2'(aq)$ $\overline{\text{Zn}^{2+}}$ (aq) + 2e $\overline{\text{Zn}(s)}$ *the strongest oxidant reacts with the strongest reductant* $2H_2O(1) + 2e \rightarrow H_2(g) + 2OH(aq)$

 Reverse top equation $2\Gamma(aq) \rightarrow I_2(l) + 2e$ $\text{Zn}^{2+}(\text{aq}) + 2\text{e} \rightarrow \text{Zn}(\text{s})$

 Overall $2I(aq) + Zn^{2+}(aq) \rightarrow Zn(s) + I_2(l)$

Products: zinc and iodine (water does not react this time)

8.

9. a. silver, copper, lead, nickel etc

b. potassium, magnesium, sodium etc

10. $Q=It = 4.2x24x60x60 = 363000 \text{ C}$

$$
n(e) = \frac{363000}{96500} = 3.7 \text{mol}
$$

$$
n(\text{Al}) = 1/3 \text{ } n(\text{e}) = 1/3 \text{ } x3.7 = 1.25 \text{mol}
$$

$$
mass(Al) = nxM = 1.25x26.9 = 33.7g
$$

11.

$$
n(Ca) = \frac{22000}{40} = 550 \, mol
$$

n(e) = *n*(Ca) *x* 2 = 550*x*2 = 1100*mol*

$$
Q = nx96500 = 1100x96500 = 1.06 x 108 C
$$

$$
t = \frac{Q}{i} = \frac{1.06 \times 10^8}{12} = 8.85 \times 10^6 \text{ sec}
$$