

Chemistry Teach Yourself Series Topic I: pH Author: Pat O'Shea

A: Level 14, 474 Flinders Street Melbourne VIC 3000 T: 1300 134 518 W: tssm.com.au E: info@tssm.com.au

Contents

pH formula: Derivation of formula	3
pH of strong acids	4
Alkaline solutions	6
pH of weak acids	8
Solutions to Questions	10

рΗ

What is it?: a measure of the acidity or alkalinity of a solution.

$$pH = -\log_{10}[H_3O^+]$$

pH formula: Derivation of formula

Unit 2 Chemistry

$HCI(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + CI^-(aq)$				
$HNO_{3}(aq) + H_{2}O(l) \longrightarrow H_{3}O^{+}(aq) + NO_{3}^{-}(aq)$				
$CH_{3}COOH(l) + H_{2}O(l) \longleftrightarrow H_{3}O^{+}(aq) + CH_{3}COO^{-}(aq)$				
<u>Acid definition</u> . A substance that can donate a proton (H^+)				
CH ₃ COOH is a weak acid. This means that it only donates a proportion of its protons.				
2 M HCl 2 M HNO ₃ dangerous solution				
2 M CH ₃ COOH not a dangerous solution				

Concentration of the acid itself does not indicate the acidity of the solution that will form.

2 M HCl	leads to	2 M	$\mathrm{H_3O}^+$	solution
2 M HNO ₃	leads to	2 M	H_3O^+	solution
2 M CH ₃ COOH	leads to	0.001 M	$\mathrm{H_{3}O}^{+}$	solution

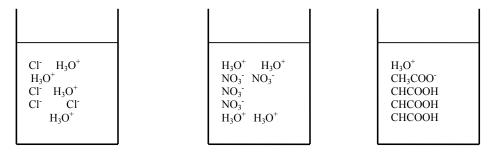


Diagram: The first two solutions are strong acids, the third is a weak acid.

Note that $[H_3O^+]$ is a better measure of acidity, hence it is used in pH formula.

Lactic acid has a $[H_3O^+]$ of 0.000001 M.

That is a very small number, hence the pH formula uses log to make this a more familiar number $log_{10}(0.000001) = -6$.

[H₃O⁺] is the best measure of acid strength $pH = -\log_{10}[H_3O^+]$ we sign converts most answers to \log scale makes small numbers

Negative sign converts most answers to positive number

log scale makes small numbers manageable

pH of strong acids

Unit 2 Chemistry

Example

Calculate the pH of the following strong acids

a. 0.01 M HCl**b.** 0.0001 M HNO₃

Solution

Strong acid \Rightarrow [H₃O⁺] assumed = concentration of the acid itself

a. [HCl] = 0.01 => [H₃O⁺] = 0.01 => pH = $-\log_{10}(0.01)$ = 2

b. [HCl] = 0.0001 \implies [H₃O⁺] = 0.0001 \implies pH = $-\log_{10}(0.0001) = 4$

Short cut

If the concentration is a simple power of 10, a calculator is not required i.e.

a.
$$pH = -log_{10}(0.01)$$

 $pH = -log_{10}(10^{-2}) = 2$
b. $pH = -log_{10}(0.0001)$
 $pH = -log_{10}(10^{-4}) = 4$

 $pH = -log_{10}(10^{-4}) = 4$

This technique is helpful when working in reverse;

If the pH - is 4, then
$$[H_3O^+] = 10^{-4}$$

- is 2, then $[H_3O^+] = 10^{-2}$

Questions

- 1. Calculate the pH of the following solutions of nitric acid, HNO₃
- **a.** 1.0 M
- **b.** 0.1 M
- **c.** 0.00001 M
- **2.** Complete the table below

concentration M	рН
1.0	0
0.10	
0.001	
	1
	4
	6

- **3.** Given the pH of the following solutions, what is the hydronium ion concentration?
- **a.** pH = 1.0
- **b.** pH = 5.0

Alkaline solutions

Unit 2 Chemistry

Solutions containing or producing OH⁻ ions are alkaline i.e. NaOH or NH₃

The amount of $[H_3O^+]$ has to be found using the formula

$$[H_3O^+][OH^-] = 10^{-14} M^2$$
 at 25 °C.

Example

Calculate the pH of the following alkaline solutions

```
a. 0.01 M LiOHb. 0.5 M NaOH
```

Solutions

Example a. can be completed without a calculator because powers of 10 are used. Example b. is best completed with a calculator.

a. $[H_3O^+][OH^-] = 10^{-14}$

$$[OH^{-}] = 0.01 = 10^{-2}$$

=> $[H_3O^{+}] \ge 10^{-2} = 10^{-14}$
=> $[H_3O^{+}] = \frac{10^{-14}}{10^{-2}} = 10^{-12}$ => $pH = -\log(10^{-12}) = 12$

b. $[H_3O^+][OH^-] = 10^{-14}$

```
[OH^{-}] = 0.5
```

=>
$$[H_3O^+] \ge 0.5 = 10^{-14}$$

=> $[H_3O^+] = \frac{10^{-14}}{0.5} = 2.0x10^{-14}$ => $pH = -\log(10^{-12}) = 13.7$

Example

c. Calculate the pH of a $0.005 \text{ M Mg}(\text{OH})_2$

Note: pH uses the $[OH^-]$. If the Mg(OH)₂ is 0.005, then $[OH^-]$. = 2 x 0.005 = 0.01 M

Therefore the working is exactly the same as example **a** above and the answer is the same, 12.

Question

- 4. Calculate the pH of a solution of
- **a.** 0.001 M NaOH

Care: watch for 2 here b. b. 0.01 M Mg(OH)2

pH of weak acids

Unit 4 Chemistry

CH₃COOH is a weak acid. It only donates a small percentage of its protons.

 $CH_3COOH(l) + H_2O(l) \Leftrightarrow H_3O^+(aq) + CH_3COO^-(aq)$

The $[H_3O^+]$ concentration is much less than the CH₃COOH concentration, therefore the process of calculating pH is different.

$$K = \begin{bmatrix} \underline{H_3O^+} \end{bmatrix} \begin{bmatrix} \underline{CH_3COO^-} \end{bmatrix} \text{ hence } K_a = \begin{bmatrix} \underline{H_3O^+} \end{bmatrix} \begin{bmatrix} \underline{CH_3COO^-} \end{bmatrix} \begin{bmatrix} \underline{CH_3COO^-} \end{bmatrix} \begin{bmatrix} \underline{CH_3COO^-} \end{bmatrix}$$

 $K_a = [\underline{\mathrm{H}_3\mathrm{O}^+}][\underline{\mathrm{CH}_3\mathrm{COO}^-}]$ [CH₃COOH]

Questions will – give K_a and ask for pH **OR** give pH and ask for K_a

Examples

a. A 0.05 M ethanoic acid solution has a pH of 3.2. Calculate the value of K_a for the ethanoic acid.

b. The K_a value for a 0.01 M sample of hydocyanic acid is 6.3 x10⁻¹⁰. Calculate the pH of the solution.

Solutions

a. $K_a = [\underline{\text{H}_3\text{O}^+}][\underline{\text{CH}_3\text{COO}^-}]$ [CH₃COOH]

If pH = 3.2, then $[H_3O^+] = 10^{-3.2} = 6.31 \times 10^{-4}$

Since CH₃COOH was the only acid added, $[H_3O^+] = [CH_3COO^-] = 6.31 \times 10^{-4}$

$$K_a = [\underline{H_3O^+}][\underline{CH_3COO^-}] = \underline{6.31 \times 10^{-4} \times 6.31 \times 10^{-4}} = 7.96 \times 10^{-6} \text{ M}$$

[CH₃COOH] 0.05

b. $K_a = [\underline{H}_3 \underline{O}^+][\underline{CN}^-]$ [HCN]

To calculate pH, the $[H_3O^+]$ needs to be determined.

```
If [H_3O^+] = X, then [CN^-] also = X

=> Ka = \frac{X \times X}{0.01} = 6.3 \times 10^{-10}

=> X = 6.3 \times 10^{-10} \times 0.01 = 6.3 \times 10^{-12}

=> X = 2.5 \times 10^{-6}

pH = -\log_{10}[H_3O^+]

= -\log_{10}(2.5 \times 10^{-6}) = 5.6
```

Questions

5. Calculate the *Ka* of a 0.01 M solution of hydrocyanic acid if the pH is 4.7.

6. The acidity constant for ethanoic acid is 1.7×10^{-5} . Calculate the pH of a 0.05 M solution of acid.

Solutions to Questions

1.

- **a.** $pH = -log_{10}(1.0) = 0$
- **b.** $pH = -log_{10}(0.10) = 1$ **c.** $pH = -log_{10}(0.00001) = 5$

2.

concentration M	рН
1.0	0
0.10	1
0.001	3
0.10	1
0.0001	4
0.000001	6

3.

- a.
- $[H_3O^+] = 10^{-1} = 0.1$ $[H_3O^+] = 10^{-5} = 0.00001$ b.

4.

a.
$$[H_3O^+][OH^-] = 10^{-14}$$

 $[OH^-] = 0.001 = 10^{-3}$
 $=> [H_3O^+] \times 10^{-3} = 10^{-14}$
 $=> [H_3O^+] = \frac{10^{-14}}{10^{-3}} = 10^{-11}$ $=> pH = -\log(10^{-11}) = 11$

b.
$$[H_3O^+][OH^-] = 10^{-14}$$

 $[OH^-] = 0.01 \text{ x } 2 = 0.02$
 $=> [H_3O^+] \text{ x } 0.02 = 10^{-14}$
 $=> [H_3O^+] = \frac{10^{-14}}{0.02} = 5x10^{-13} => pH = -\log(5 \text{ x } 10^{-13}) = 12.3$

5. If pH = 4.7, then
$$[H_3O^+] = 10^{-4.7} = 2.0 \times 10^{-5}$$

$$K_a = [\underline{\text{H}_3\text{O}^+}][\underline{\text{CN}^-}] = \underline{2.0 \times 10^{-5} \times 2.0 \times 10^{-5}}_{0.05} = 8.0 \times 10^{-9} \text{ M}$$

6. The acidity constant for ethanoic acid is 1.7×10^{-5} . Calculate the pH of a 0.05 M solution of acid. $K_a = [\underline{\text{H}_3\text{O}^+}][\underline{\text{CH}_3\text{COO}^-}]$ [CH₃COOH]

To calculate pH, the $[H_3O^+]$ needs to be determined.

If $[H_3O^+] = X$, then $[CH_3COO^-]$ also = X => $Ka = \frac{X \times X}{0.01} = 1.7 \times 10^{-5}$ => $X^2 = 1.7 \times 10^{-5} \times 0.01 = 1.7 \times 10^{-7}$ => $X = 4.1 \times 10^{-4}$ pH = $-\log_{10}[4.1 \times 10^{-4}]$ = 3.38