

SAC 1 -

ns, Advances in Applied Energy 3 2021, Published by Elsevier, accessed on the 15th July 2023 from https://www.sciencedirect.com/science/article/pii/S2666792421000421?via%3Dihub

Unit 3 Chemistry Assessment Guide

An analysis and evaluation of a chemical innovation, research study, case study, socio-scientific issue, or media communication.

Case Study

Both methanol and hydrogen can be used as fuel sources to produce electricity through fuel cells. These fuel cells can then provide electricity to run cars or buses.

Methanol and hydrogen production processes are presented in Figure 1. Hydrogen can be produced through the electrolysis of water, where the electricity is sourced from renewable energy; the hydrogen gas is then liquefied at high pressure and transported for the end use. The methanol production involves capturing CO₂ from the air (or from heavy industry) and synthesising it with added hydrogen to obtain methanol through green chemistry processes.

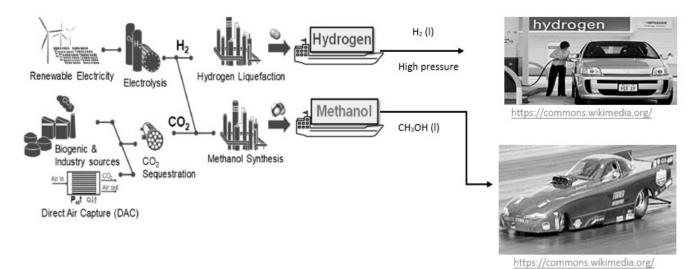


Figure 1. A diagram of hydrogen and methanol production using green chemistry approaches.

e: Adapted from Schorn et al 2021. Methanol as a renewable energy carrier: An as

After production, each of these fuels can be used to power cars or buses by using either a Methanol Fuel Cell (MFC) or a Hydrogen Fuel Cell (HFC) respectively (see Figure 2).

ent of production and transportation costs for sele

ACED Units 3&4 Chemistry Unit 3 SAC 1 – Assessment Guide © ACED 2024. This assessment is only licenced to the purchasing school. Page 1 of 8

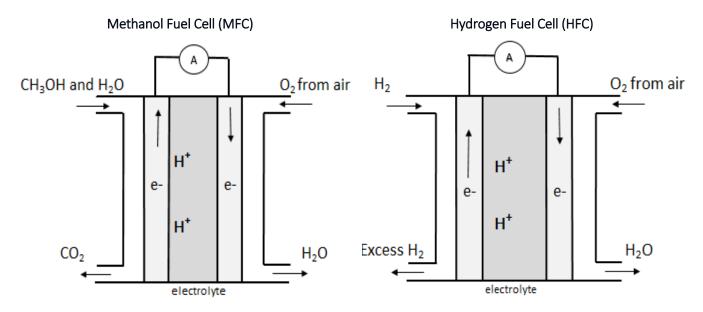


Figure 2. Diagrams of a methanol fuel cell (MFC) and a hydrogen fuel cell (HFC).

A selection of fuel properties is shown in Table 1.

Table 2	1. Selected	Fuel Pro	perties
			00.000

Property	CH₃OH	H ₂
Density (kg/m³)	792 as liq.	0.08375 (as gas) 70.8 (as liq.)
Flashpoint (Ĉ)	11	-253
Heat of Combustion (kJ/g)	22.7	141
Heat of Combustion (kJ/mol)	726	282
Volume expansion ratio from Liquid to Gas	-	1 to 848

Barbir F., n.d.. Safety issues of hydrogen in vehicles, accessed on the 15th July 2023 from https://courses.engr.illinois.edu/npre470/sp2019/web/readings/Hydrogen%20safety%20issues.pdf Lanz, A., et al., 2001. Hydrogen Fuel Cell Engines and Related Technologies College of the Desert, Palm Desert, CA, USA, accessed on the 15th July from https://www.energy.gov/hydrogen-fuel-cells

Sources: Adapted from

Lanz, A., et al., 2001. Hydrogen ruei cell Engines and Kelated Technologies College of the Desert, Palm Desert, CA, USA, accessed on the 15 July from https://www.energy.gov/hydrogen-ruei-cells Advanced motor fuels, 2023. Methanol, accessed on the 15th July from https://www.iea-amf.org/content/fuel_information/methanol#:~:text=Low%20lean%20flammability%20limit,to%20the%20lower%20heating%20value

Media Communication

[1] - "Hydrogen and methanol both qualify as substitutes for current energy carriers." The method proposes an option for, "...a methanol production plant with power stations and other manufacturing plants, such as cement and pulp-and-paper mills, to reduce carbon dioxide emissions and store excess energy generated from power plants."

[2] - "Methanol, a liquid fuel with controlled flammability, easy transportation, storage, versatility, retrofitting capabilities and the ability to serve as a fuel additive, offers advantages over hydrogen, despite hydrogen having the highest energy density."

[3] - "Acute exposure of humans to methanol by inhalation or ingestion may result in visual disturbances, such as

blurred or dimness of vision, leading to blindness...".

[4] - "...Hydrogen has a very low ignition energy, about one order of magnitude lower than other fuels. [...] [It also] has a flame velocity seven times faster than that of natural gas or gasoline".

Sources: Adapted from: [1] - Schorn et al 2021. Methanol as a renewable energy carrier: An assessment of production and transportation costs for selected global locations, Advances in Applied Energy 3 2021, Published by Elsevier, accessed on the 15th July 2023 from https://www.sciencedirect.com/science/article/pii/S2666792421000421?via%3Dihub [2] - Samuel Emebu **, Clara Mendoza Martinez *, Osze Omoregbe **, Aleksi Mankonen *, Ebuka A. Ogbuoji ¹, Ibrahim Shaikh *, Even Pettersen ⁴, Marek Kubalčík *, Charity Okleimen * Chemical Engineering Science, Volume 278, 15 August 2023, 118888 [3] - USEPA, 2000, Methanol, accessed on the 15th July 2023 from https://www.epa.gov/sites/default/files/2016-09/documents/methanol.pdf [4] – Barbir F., n.d.. Safety issues of hydrogen in vehicles, accessed on the 15th July 2023 from https://courses.engr.illinois.edu/npre470/sp2019/web/readings/Hydrogen%20safety%20issues.pdf contemporary Question 1a (1 mark) Answer: responses to challenges After production (see • Leaks – any leak can cause a fire and, hence, they are a safety concern. and the role of innovation in the design Figure 1), methanol Hydrogen is transported and stored in liquid form under high pressure; it of fuel cells to meet society's energy needs, and hydrogen are has a low ignition energy and can ignite faster than methanol. Methanol with reference to green chemistry principles: transported to fuel is a liquid at working pressure, thus requiring a higher ignition energy, design for energy stations. and, hence, presents fewer risks. efficiency, and use of renewable feedstocks • Flash point – hydrogen has a lower flash point than methanol; both Outline a safety issue are flammable, but, in the presence of oxygen and an ignition source, discuss relevant chemical information, with either the hydrogen ignites much more easily than methanol. ideas, concepts, transport, storage or • Flame expansion – a hydrogen flame expands faster than a methanol theories and models and the connections usage of hydrogen flame due to hydrogen's lower density, thus presenting a higher risk. between them compared to methanol. • Fumes inhalation – methanol fumes inhalation can lead to visual disturbances, therefore impacting safe driving, while hydrogen is unlikely to have a major effect. Marking Protocol: One mark for any of the above points. the common design Question 1b (1 mark) Answer: features and general operating principles of Identify a similarity • Fuel/reactants is/are continuously supplied to the cell. fuel cells, including the between MFCs and • Products are continuously removed from the cell. use of porous electrodes for gaseous HFCs that explains why • Reactants are separated so that the potential chemical energy is reactants to increase cell efficiency they are considered transformed into electrical energy. fuel cells. • They both produce only DC power. Marking Protocol: One mark for any one of the above points. the writing of balanced Question 1c (3 marks) Answer: half-equations Write half equations • Anode: $CH_3OH_{(1)} + H_2O_{(1)} -> CO_{2(q)} + 6H_{(aq)}^+ + 6e^{-1}$ (including states) for oxidation and reduction for the reactions • Cathode: $O_{2(q)} + 4H^{+}_{(aq)} + 4e^{-} - > 2H_2O_{(l)}$ reactions, and the overall redox cell occurring at the anode • Overall equation: 2CH₃OH₍₁₎ + 3O_{2(g)} --> 2CO_{2(g)} + 4H₂O₍₁₎ reaction in both acidic and basic conditions and cathode of the MFC. Write the overall Marking Protocol: equation (including One mark for each of the above points. states) for the MFC as it operates.

the writing of	Question 1d (3 marks)	Answer:
balanced half- equations (including	Write half equations for	• Anode: $H_{2(q)} \rightarrow 2H^{+}_{(aq)} + 2e^{-}$
states) for oxidation and reduction	the reactions occurring	• Cathode: $O_{2(q)} + 4H^{+}_{(aq)} + 4e^{-}> 2H_2O_{(l)}$
reactions, and the	at the anode and	• Overall equation: $2H_{2(q)} + O_{2(q)}> 2H_2O_{(l)}$
overall redox cell reaction in both acidic	cathode of the HFC.	$2 \cdot 2 \cdot 2 \cdot 2 = 1 + 2 \cdot 2$
and basic conditions	Write the overall	Marking Protocol:
	equation (including	One mark for each of the above points.
	states) for the HFC as it	one mark for each of the above points.
	operates.	
	operates	
calculation of energy	Question 1e (3 marks)	Answer:
transformation efficiency during	The theoretical voltage	• The hydrogen fuel cell.
combustion as a	produced by a MFC is	• $E(MFC) = +1.6 V \times 40\% = +0.64 V$
percentage of chemical energy	+1.6 V and the actual	• $E(HFC) = +1.23 V \times 40\% = +0.74 V$
converted to useful energy	efficiency is 40%. The	$-L_{1111}C_{1} - \tau 1.25 V X 0070 - \tau 0.74 V$
57	actual efficiency of the	Marking Protocol:
	HFC is 60%.	Marking Protocol:
		One mark for each of the above points.
		N.B. The potential energy value for a HFC is derived from the
	Which cell provides the	electrochemical series.
	highest actual voltage?	
	Show your working.	
the definition of a fuel,	Question 1f (2 marks)	Answer:
including the distinction between	Compare and discuss	• Production of CO_2 – MFCs produce CO_2 while HFCs only produce water.
fossil fuels (coal,	the environmental	At SLC, H_2O is a liquid and not a greenhouse gas. HFC use is therefore
natural gas, petrol) and biofuels (biogas,	impact of using MFCs	more environmentally friendly than MFC use.
bioethanol, biodiesel) with reference to their	and HFCs when their	
renewability (ability of		• C- Zero Emissions – In this initiative, CO_2 is captured from the
a resource to be replaced by natural	reactants are sourced	atmosphere and transformed into methanol. More research is needed
processes within a	via renewable	to determine whether the CO_2 that is captured can negate the CO_2 that
relatively short period of time) point/s	processes.	is produced during MFC use; if so, this process could have net carbon
		neutrality. Hydrogen production involves only renewable electricity;
apply sustainability concepts (green		the electrolysis produces only hydrogen and oxygen and no other
chemistry principles,		greenhouse gases. Hence, HFCs are a 'clean' technology with zero
development goals and the transition		carbon emissions.
from a linear towards		
a circular economy) to		Marking Protocol:
analyse and evaluate		
responses to		Two marks for any of the above points.
responses to chemistry-based scenarios, case		Two marks for any of the above points.
responses to chemistry-based		Two marks for any of the above points.
responses to chemistry-based scenarios, case studies, issues and challenges		Two marks for any of the above points.
responses to chemistry-based scenarios, case studies, issues and		Two marks for any of the above points.
responses to chemistry-based scenarios, case studies, issues and challenges critically evaluate and interpret a range of scientific and media		Two marks for any of the above points.
responses to chemistry-based scenarios, case studies, issues and challenges critically evaluate and interpret a range of		Two marks for any of the above points.
responses to chemistry-based scenarios, case studies, issues and challenges critically evaluate and interpret a range of scientific and media texts (including journal articles, mass media		Two marks for any of the above points.
responses to chemistry-based scenarios, case studies, issues and challenges critically evaluate and interpret a range of scientific and media texts (including journal articles, mass		Two marks for any of the above points.

claims and conclusions related to

calculations related to the application of stoichiometry to reactions involving the combustion of fuels, including mass-mass, mass-volume and volume-volume	Question 1g (3 marks) Assuming SLC, what is the amount of greenhouse gas, in kg, that is produced from	Answer: $2CH_3OH_{(1)} + 3O_{2(g)}> 2CO_{2(g)} + 4H_2O_{(1)}$ $\bullet n(CH_3OH) = m/M = (1000 g)/(12+3+16+1) g/mol) = 31.25 mol$ $\bullet n(CH_3OH) : n(CO_2) = 2 : 2$ $n(CO_2) = 31.25 mol$
stoichiometry, to determine heat energy released, reactant and product amounts and	the reaction of 1.0 kg of fuel in a methanol fuel	• m(CO₂)= n x M = 31.25 x (12+2x16) = 1375 g = 1.4 kg
net volume or mass of	cell? Show your	Marking Protocol:
major greenhouse gases	working.	One mark for each of the above points.
(CO2, CH4 and H2O), limited to standard laboratory conditions (SLC)		N.B. Only calculations for the methanol reaction are relevant.
combustion (complete and incomplete)	Question 1h (1 mark)	Answer:
reactions of fuels as	Write the	• $2CH_3OH_{(l)} + 3O_{2(g)}> 2CO_{2(g)} + 4H_2O_{(l)}$ $\Delta H = -1452 \text{ kJ/mol}$
exothermic reactions: the writing of	thermochemical	• $CH_3OH_{(l)} + 3/2O_{2(g)}> CO_{2(g)} + 2H_2O_{(l)}$ $\Delta H= -726 \text{ kJ/mol}$
balanced thermochemical	equation for the	
equations, including	complete combustion	Marking Protocol:
states, for the complete and incomplete combustion of organic molecules using experimental data and data tables	of methanol at SLC.	One mark for either of the above points.

A student researched whether a small battery can be replaced with a galvanic cell that can be assembled in the school laboratory.

The Primary Cell – Battery

Zinc-silver oxide cells are frequently used to power small electronics and photographic equipment. The cell configuration below (Figure 3) includes: an amalgamated zinc anode; silver oxide as the cathode material; and a potassium hydroxide electrolyte. During discharge, zinc will form zinc oxide whilst silver (I) oxide will form silver.

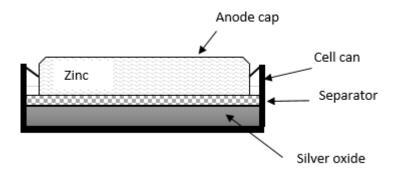


Figure 3. A schematic representation of a zinc-silver oxide cell.

Through the research, the student identified the battery discharge curve as well as other properties:

- a long service life;
- a lack of mercury, lead and cadmium, making the silver oxide batteries environmentally friendly; and
- a silver oxide system that is best suited for operation between -20°C and 54°C (with the starting cell potential being 1.55 V).

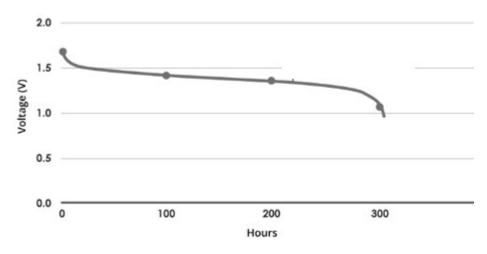
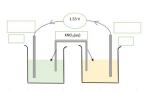


Figure 4. A silver oxide battery discharge curve.

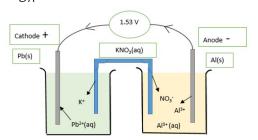
Source: GP Industrial, 2023. Silver oxide button batteries, accessed on the 15th July 2023 from https://ind.gpbatteries.com/products/primary-batteries/silver-oxide-batteries/sil

the common design features and general operating principles of non-rechargeable (primary) galvanic cells converting chemical energy, into electrical energy, including electrode polarities and the role of the electrodes (inert and reactive) and	Question 2a (1 mark) State the polarity of the zinc electrode.	Answer: • Negative. Marking Protocol: One mark for the above point.
electrolyte solutions		
The writing of balanced half-	Question 2b (3 marks)	Answer:
equations (including states) for oxidation	Write the equations for	• Anode: $Zn_{(s)} + 2OH_{(aq)} - ZnO_{(s)} + H_2O_{(l)} + 2e^{-1}$
and reduction	the reactions that are	• Cathode: $Ag_2O_{(s)} + H_2O_{(l)} + 2e^{-}> 2Ag_{(s)} + 2OH_{(aq)}^{-}$
reactions, and the overall redox cell reaction in both acidic	occurring at the anode and the cathode as well	• Overall equation: $Zn_{(s)} + Ag_2O_{(s)} - > ZnO_{(s)} + Ag_{(s)}$
and basic conditions	as the overall equation.	Marking Protocol:
		One mark for each of the above points.
redox reactions as simultaneous	Question 2c (2 marks)	Answer:
oxidation and	Identify the oxidising	• The oxidising agent is $Ag_2O_{(s)}$ (or Ag in $Ag_2O_{(s)}$).
reduction processes, and the use of	agent (oxidant) in the	• Ag from $Ag_2O_{(s)}$ changes ON rom +1 to ON of 0 in Ag.
oxidation numbers to identify the reducing	battery. Justify your	
agent, oxidising agent	answer using oxidation	Marking Protocol:
and conjugate redox pairs	numbers.	One mark for each of the above points.


The Galvanic Cell

Using the electrochemical series, the student constructs a galvanic cell with a similar potential difference to the zinc-silver oxide cell. The electrodes are made of reactive metals and the electrolytes consist of ions of the same metal as the electrode. The metals available in the lab are Al, Zn, Fe, Pb and Cu. The student chooses a combination of oxidising and reducing agents that give a potential difference of +1.53 V. The galvanic cell is tested at SLC.

the common design features and general operating principles of non-rechargeable (primary) galvanic cells converting chemical energy, including electrode polarities and the role of the electrodes (inert and reactive) and electrolyte solutions dot point/s


Question 2d (4 marks) Annotate the diagram below identifying:

- Answer:
- The anode and its
- polarityThe cathode and its polarity
- The electrode material (metal species) in each half cell
- The movement of ions from the internal circuit.

Right Box: Anode Left Box: Cathode +

- Anode: Al_(s) Cathode: Pb_(s)
- NO_3^- to the Al^{3+}/Al cell and K^+ to the Pb^{2+}/Pb cell. OR

Marking Protocol:

One mark for each of the above points.

the writing of balanced halfequations (including states) for oxidation and reduction reactions, and the overall redox cell reaction in both acidic and basic conditions

the use and limitations of the electrochemical series in designing galvanic cells and as a tool for predicting the products of redox reactions, for deducing overall equations from redox half-equations and for determining maximum cell voltage under standard conditions

redox reactions as simultaneous oxidation and reduction processes, and the use of oxidation numbers to identify the reducing agent, oxidising agent and conjugate redox Question 2e (3 marks) Write the equations for the reactions that are occurring at the anode and the cathode as well as the overall equation.

Answer:

- Anode: Al_(s) --> Al³⁺_(aq) + 3e⁻
- Cathode: $Pb^{2+}_{(aq)} + 2e^{-} --> Pb_{(s)}$
- Overall equation: $2AI_{(s)} + 3Pb^{2+}_{(aq)} -> 2AI^{3+}_{(aq)} + 3Pb_{(s)}$

Marking Protocol:

One mark for each of the above points.

the application of	Question 2f (4 marks)	Answer:
Faraday's Laws and stoichiometry to determine the quantity of galvanic or fuel cell reactant and product, and the	Assume that the mass	Al(s)> Al ³⁺ (aq) + 3e ⁻
	of each of the	• $m(Al in contact with the electrolyte) = 70\% \times 3.0 g = 2.10 g$
	electrodes is 3.00g and	n(Al) = m/M= 2.10/27 = 0.0778 mol
current or time	that they are 70.0%	• n(e ⁻)= 3 x n(Al) = 3 x 0.0778 = 0.233 mol
required to either use a particular quantity	immersed in the	● Q= n(e ⁻)x F = 0.233 x 96500 = 22485 C (or 22517 without rounding)
of reactant or produce a particular quantity of product	electrolyte.	●t = Q/I = 22485/0.500 = 44969 s = 12.49 h = 12.5 h
	If the operating current	Marking Protocol:
	is 0.500 A, how many	One mark for each of the above points.
	hours can this galvanic	
	cell generate electricity	
	for? Show your	
	working.	
the common design features and general	Question 2g (6 marks)	Answer:
operating principles of non-rechargeable	Using the data from the	• <u>Durability</u> : The battery has a robust structure that is resistant to shock
(primary) galvanic	student's research,	and vibration. The galvanic cell is made in the lab with liquids
cells converting chemical energy into	compare the small	contained in beakers; therefore, it is not robust or resistant to shocks
electrical energy, including electrode	battery and the galvanic	or vibration.
polarities and the role of the electrodes (inert	cell. Analyse their	• <u>Operational reliability</u> : The battery can operate continuously for 300
and reactive) and	durability, operational	hours (see Figure 4), having a long service life. The galvanic cell can
electrolyte solutions	reliability and the	operate only for around 12.5 hours. After 12.5 hours, the anode will
critically evaluate and	materials that are used,	disintegrate, the external circuit will be destroyed, the reactions will
interpret a range of scientific and media	including their	cease and the system will no longer produce electricity.
texts (including journal articles, mass	structures and how	• <u>Materials used</u> : The battery does not contain toxic metals of concern,
media	they operate.	such as mercury, lead or cadmium, making it environmentally friendly.
communications and opinions in the public domain), processes, claims and		The galvanic cell contains lead, a toxic metal; therefore, it is not a good environmental choice.
conclusions related to chemistry by		
considering the quality		Marking Protocol:
of available evidence		Two marks for each of the above points.
		N.B. Each point must include a comparison between the battery and the
		galvanic cell.