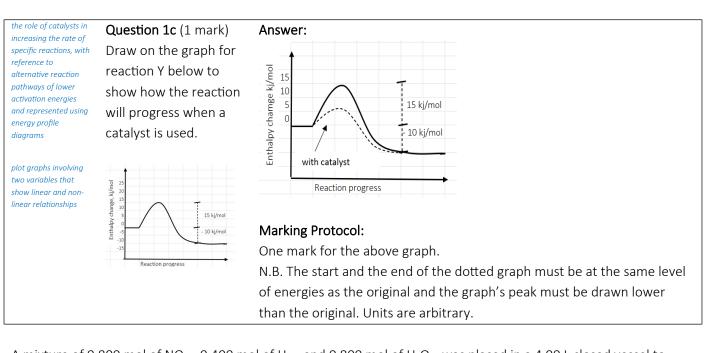

aced

Unit 3 Chemistry SAC 2 – Assessment Guide


Problem-solving, including calculations, using chemistry concepts and skills applied to real-world contexts.

Below are the energy profiles for three reactions, X, Y and Z.

factors affecting the frequency and success	Question 1a (1 mark)	Answer:
of reactant particle	Rank the rate of the	• Z < X < Y
collisions and the rate of a chemical reaction	forward reactions from	
in open and closed systems, including	slowest to fastest.	Marking Protocol:
temperature, surface		One mark for the above point.
area, concentration, gas pressures,		Explanation: The lower the activation energy, the faster the reaction.
presence of a catalyst,		
activation energy and orientation		

factors affecting the frequency and success	Question 1b (1 mark)	Answer:
of reactant particle	Rank the rate of the	• Z > Y > X
collisions and the rate of a chemical reaction	reverse reactions from	
in open and closed systems, including	fastest to slowest.	Marking Protocol:
temperature, surface		One mark for the above point.
area, concentration, gas pressures,		Explanation: The activation energy values will be 35 kJ/mol for reverse
presence of a catalyst, activation energy and		reaction X, 25 kJ/mol for reverse reaction Y, and 20 kJ/mol for reverse
orientation		reaction Z.

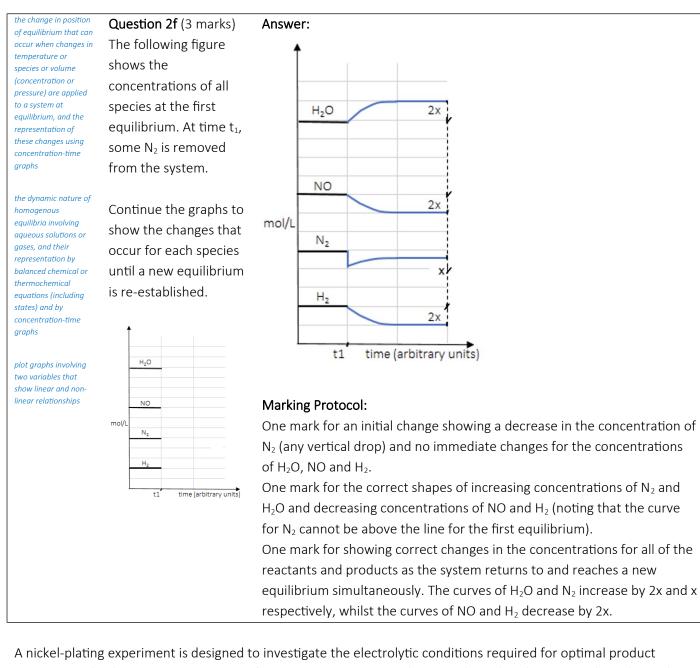
A mixture of 0.800 mol of $NO_{(g)}$, 0.400 mol of $H_{2(g)}$ and 0.800 mol of $H_2O_{(g)}$ was placed in a 4.00 L closed vessel to reach equilibrium. The reaction is:

 $2NO_{(g)} + 2H_{2(g)} \rightleftharpoons N_{2(g)} + 2H_2O_{(g)}$

When the system reached equilibrium, at a temperature T, C, the concentration of $NO_{(g)}$ was 0.124 M.

calculations involving equilibrium expressions (including units) for a closed homogeneous equilibrium system and the dependence	Question 2a (1 mark) Write the expression for the equilibrium constant, K.	Answer: • $K = \frac{[N_2][H_2O]^2}{[NO]^2[H_2]^2}$
of the equilibrium constant (K) value on the system temperature and the equation used to represent the reaction		Marking Protocol: One mark for the above point.

calculations involving equilibrium	Question 2b (4 marks)	Answer:				
expressions (including	Calculate the	V= 4.00L	NO	H ₂	N ₂	H₂O
units) for a closed homogeneous	equilibrium constant at	Initial (mol)	0.800	0.400	0	0.800
equilibrium system and the dependence	temperature TC.	Change	-2x	-2x	+x	+2x
of the equilibrium constant (K) value on		(mol)	-0.304	-0.304	+0.152	+0.304
the system			n= 0.124x4			
temperature and the equation used to		Equilibrium	= 0.496	0 400 0 204		0.00010.204
represent the reaction		(mol)	0.800-2x	0.400-0.304	0.450	0.800+0.304
process quantitative			=0.496	= 0.0960	0.152	= 1.104
data using		n = cV	x = 0.152			
appropriate mathematical		Equilibrium				
relationships and units, including		(M (mol/L))		0.096/4 =	0.152/4=	1.104/4=
calculations of ratios,			0.124	0.024	0.0380	0.276
percentages, percentage change		c = n/V				
and mean		L	1	1		1
use appropriate		[]	$N_{2}[H_{2}O]^{2}$	[0.0380][0.2	$(276)^2$	1
$K = \frac{\left[N_2\right]\left[H_2O\right]^2}{\left[NO\right]^2\left[H_2\right]^2} = \frac{\left[0.0380\right]\left[0.276\right]^2}{\left[0.124\right]^2\left[0.024\right]^2} = 326.84 = 327$					$.84 = 327 M^{-1}$	


Marking Protocol:

One mark for correct calculation of n(NO). One mark for correct mol of H_2 , N_2 and H_2O at equilibrium. One mark for correct concentrations of H_2 , N_2 and H_2O . One mark for correct value of K with correct units.

N.B. Text in blue shows detailed calculations; they are not required for full marks, but are part of the calculations to derive the final results (in black). Alternative answers can be considered if the value of K is different due to calculation errors or due to incorrect expression of K.

the distinction between reversible and irreversible reactions, and between rate and extent of a reaction	Question 2c (2 marks) Discuss the extent of the reaction with reference to the K value calculated in Question 2b.	 Answer: The K value shows that there is a significant amount of both reactants and products available at equilibrium. However, given that the calculated K value is larger than 1, there are more products than reactants at equilibrium.
		Marking Protocol:
		One mark for each of the above points.
		N.B. Alternative answers can be considered if the value of K is different to 2b due to calculation errors.

the reaction quotient (Q) as a quantitative	Question 2d (2 marks)	Answer:
measure of the extent	A change was made to	• At time t, Q < K, meaning that the concentration of products is smaller
of a chemical reaction: that is, the relative	the system so that it	than at equilibrium and the concentration of reactants is higher than at
amounts of products and reactants present	was no longer at	equilibrium.
during a reaction at a	equilibrium. Shortly	• To reach equilibrium, the reaction needs to produce more products (i.e.
given point in time	after the change, at	the reaction needs to shift forward).
the distinction	time t, the equilibrium	
between reversible and irreversible	quotient (Q) was found	Marking Protocol:
reactions, and	to be 200 M ⁻¹ .	One mark for each of the above points.
between rate and extent of a reaction	With reference to the K	N.B. Alternative answers can be considered if the value of K is different to
	value calculated in	2b due to calculation errors.
discuss relevant chemical information,	Question 2b, explain	
ideas, concepts,	what is required for	
theories and models and the connections	the system to reach	
between them	equilibrium.	
	•	
the application of Le Chatelier's principle to	Question 2e (1 mark)	Answer:
identify factors that	What measure can be	 Increasing the pressure.
favour the yield of a chemical reaction	applied to the system	 Removing product(s).
	to increase the yield of	 Adding reactant(s).
	nitrogen production?	
		Marking Protocol:
		One mark for any one of the above points.
		Explanation: Each of the above measures will result in the forward
		reaction to be favoured; therefore, the concentrations of N_2 and H_2O will
		increase and concentrations of NO and H_2 will decrease. The yield of N_2
		will increase.
		N.B. The stem does not give thermochemical information; hence, any
		discussion about temperature would be speculative.

outcomes. A beaker containing 200 mL of green 1.00 M NiSO_{4(aq)} solution is electrolysed using a carbon electrode. The second electrode is an object that is made of a material that needs to be nickel-plated. The object is not

reactive

Teactive.		
the use and limitations of the electrochemical	Question 3a (2 marks)	Answer:
series to explain or	Write the half	• Oxidation: 2H ₂ O _(I) > O _{2(g)} + 4H ⁺ _(aq) + 4e-
predict the products of the electrolysis of	equations for the	• Reduction: Ni ²⁺ _(aq) + 2e ⁻ > Ni _(s)
particular chemicals, given their state	oxidation and	
(molten liquid or in	reduction reactions for	Marking Protocol:
aqueous solution) and the electrode	this experiment.	One mark for each of the above points.
materials used, including the writing		N.B. Correct states must be included.
of balanced equations		
(with states) for the reactions occurring at		
the anode and		
cathode and the overall redox reaction		
for the cell		

the application of Question 3b (5 marks) Faraday's Laws and stoichiometry to determine the quantity of electrolytic reactant and product, and the current or time required to either use a particular quantity of reactant or produce a particular quantity of product

use appropriate chemical terminology, representations and conventions, including standard abbreviations, graphing conventions, alaebraic equations. units of measurement and significant figures

use appropriate numbers of significant figures in calculations

reproducibility, resolution, and validity of measurements; and errors (random and systematic)

For optimal plating, the Ni²⁺_(aq) concentration in solution needs to be maintained above 0.350 M. Assuming the cell operates consistently with a current of 3.00 A, and a voltage of 5 V, calculate the time, in seconds, before the initial 1.00 M NiSO₄(aq) solution would need replacing.

Answer:

- n(Ni²⁺ initial) = cV = 1.00 x 0.200 = 0.200 mol $n(Ni^{2+} final) = cV = 0.350 \times 0.200 = 0.0700 mol$
- n(Ni²⁺ available to react) = 0.200 0.0700 = 0.130 mol
- • $n(e_{-}) = 2n(Ni_{(s)}) = 2 \times 0.130 = 0.260 \text{ mol}$
- Q = n(e-) x F = 0.260 x 96500 = 25090 C
- $t = Q/I = 25090/3.00 = 8363.33 s = 8.36 x 10^3 s$

Marking Protocol:

One mark for each of the above points.

N.B. The final result must include the correct units and be rounded to three significant figures. Consequential marks are allowed (to a maximum of four marks).

the common design features and general operating principles of commercial electrolytic cells (including, where practicable, the removal of products as they form), and the selection of suitable electrode materials, the electrolyte (including its state) and any chemical additives that result in a desired electrolysis product (no specific cell is required)	Question 3c (2 marks) State two observations that could be noticed in the nickel-plating cell while it is	 Answer: The green colour of the solution would fade (becoming a lighter green). Bubbles would be observed at the anode (due to O₂ gas being formed). Nickel would be plated on the object at the cathode.
	operating.	Marking Protocol: One mark for any of the above points, to a maximum of two.
identify and analyse experimental data qualitatively, handling, where appropriate, concepts of: accuracy, precision, repeatability,		

the application of Faraday's Laws and stoichiometry to determine the quantity of electrolytic reactant and product, and the current or time required to either use a particular quantity of reactant or produce a particular quantity of product

use appropriate chemical terminology, representations and conventions, including standard abbreviations, graphing conventions, algebraic equations, units of measurement and significant figures

use appropriate numbers of significant figures in calculations

investigation

Question 3d (4 marks) If the cell operates with a consistent current of 3.00 A, calculate the time, in seconds, for 2.00 g nickel to be plated on the object.

Answer:

- n(Ni) = m/M = 2.00/58.7 = 0.03407 mol
- • $n(e_{-}) = 2n(Ni) = 0.06814 mol$
- Q = n(e⁻) x F = 0.06814 x 96500= 6576
- $t = Q/I = 6576/3.00 = 2191.9. s = 2.19 \times 10^3 s$

Marking Protocol:

One mark for each of the above points.

N.B. The final result must include the correct units and be rounded to three significant figures. Consequential marks are allowed (to a maximum of three marks).

the application of Question 3e (1 mark) Answer: Faraday's Laws and • Use a higher concentration of $NiSO_{4(aq)}$ in the electrolyte. stoichiometry to Assuming that each determine the object needs to have a • Replace the carbon electrode with a Ni_(s) electrode, which then becomes quantity of electrolytic reactant and product, plating of 2.00 g, a source of $Ni^{2+}(aq)$ in the electrolyte, depositing as $Ni_{(s)}$ on the object. and the current or time required to either identify one change use a particular that could be made to Marking Protocol: quantity of reactant or produce this experiment so that One mark for either of the above points. a particular quantity of product more objects can be fully plated without evaluate data to having to top up the determine the degree to which the evidence electrolyte with Ni²⁺ supports the aim of the investigation, and (aq). make recommendations, as appropriate, for modifying or extending the

A trial investigates the effect of changes in the reaction conditions for the following reaction, which is carried out in a closed vessel.

$2SO_{2(g)} + O_{2(g)}$	Question 4a (1 mark)	Answer:			
of reactant particle collisions and the rate of a chemical reaction in open and closed	What are the observed effects on the rate of reaction, the	Change in reaction conditions	Rate of Reaction	Equilibrium Constant Value (K)	Position of Equilibrium Shifts
systems, including temperature, surface area, concentration, gas pressures, presence of a catalyst, activation energy and orientation	equilibrium constant and the position of equilibrium when the volume of the vessel is halved at constant	Halving the volume of the vessel	Increases	No effect	Shifts right (forward)
conflict between optimal rate and temperature considerations in producing equilibrium reaction products, with reference to the green chemistry principles of catalysis and designing for energy efficiency the distinction between reversible reactions, and between rate and extent of a reaction	temperature?	the concentration increases the react will cause a change there will be no eff	ng the volume impl per unit of volume tion rate. Tempera e in the value of K. fect on K. your the side with t	ture change is the o Since the temperat the lower amount c	centration only factor that cure is constant, of moles (particles)

factors affecting the frequency and success of reactant particle collisions and the rate of a chemical reaction in open and closed systems, including temperature, surface area, concentration, aas pressures. presence of a catalyst. activation energy and orientation

responses to the conflict between optimal rate and temperature considerations in producing equilibrium reaction products. with reference to the green chemistry principles of catalysis and designing for energy efficiency

the distinction between reversible and irreversible reactions, and between rate and extent of a reaction

Question 4b (1 mark) What are the observed effects on the rate of reaction, the equilibrium constant and the position of equilibrium when the temperature is increased?

Answer:			
Change in reaction conditions	Rate of Reaction	Equilibrium Constant Value (K)	Position of Equilibrium Shifts
Increasing the temperature	Increases	Decreases	Shifts left (reverse)

Marking Protocol:

One mark for all of the above points.

Explanation: An increased temperature increases reaction rate as the average kinetic energy of particles increases.

Temperature change influences the K value; an increase in temperature will decrease the K value for an exothermic reaction.

The reaction is exothermic; an increased temperature inhibits the exothermic reaction and the system will favour the side that will cool down the reaction, which is the reactant side (the reverse reaction).

factors affecting the frequency and success	Question 4c (1 mark)	Answer:			
of reactant particle	What are the observed	Change in	Data of	Equilibrium	Position of
collisions and the rate of a chemical reaction in open and closed systems, including	effects on the rate of	reaction conditions	Rate of Reaction	Constant Value (K)	Equilibrium Shifts
	reaction, the				
emperature, surface	equilibrium constant				
irea, concentration, las pressures,	and the effect on the	Using a catalyst	Increases	No effect	No effect
resence of a catalyst, ctivation energy and	position of equilibrium			55	55
orientation	when a catalyst is	L		1	
responses to the conflict between optimal rate and temperature considerations in producing equilibrium reaction products, with reference to the green chemistry principles of catalysis and designing for energy efficiency	used?	provides an alterna	talyst will increas tive pathway with	se the rate of the rea n a lower activation prium constant or th	energy.
the distinction between reversible and irreversible reactions, and between rate and extent of a reaction					

Cobalt dissolves in hydrochloric acid and forms coloured solutions, as shown in the reaction below.

 $\mathrm{Co}(\mathrm{H}_{2}\mathrm{O})_{6}^{2+}{}_{(\mathrm{aq})} + 4\mathrm{Cl}^{-}{}_{(\mathrm{aq})} \rightleftarrows \mathrm{Co}\mathrm{Cl}_{4}^{2-}{}_{(\mathrm{aq})} + 6\mathrm{H}_{2}\mathrm{O}_{(\mathrm{l})} \qquad \Delta\mathrm{H} > 0$

representation by balanced chemical or thermochemical equations (including states) and by concentration-time

graphs

<u>pink</u>	<u>blue</u>	
the dynamic nature of homogenous	Question 5a (2 marks)	Answer:
equilibria involving	At equilibrium, and a	• Blue or violet-blue.
aqueous solutions or gases, and their	particular temperature,	ullet An increase in the concentration of the reactants will favour the
representation by balanced chemical or	the solution has a	forward reaction, leading to an increased concentration of $CoCl_4^{2-}$ and a
thermochemical equations (including states) and by	violet colour.	decreased concentration of $Co(H_2O)_6^{2+}$.
concentration-time graphs	What colour will be	Marking Protocol:
5 /	observed if the	One mark for each of the above points.
	concentration of Cl ⁻ (aq)	
	is increased? Justify	
	your response with	
	reference to Le	
	Chatelier's Principle.	
the dynamic nature of homogenous	Question 5b (2 marks)	Answer:
equilibria involving	What colour will be	• Pink.
aqueous solutions or gases, and their	observed when the	• The reaction is endothermic; a decrease in temperature will favour the

	Marking Protocol:
Explain your answer.	and a decreased concentration of $CoCl_4^{2-}$.
system is cooled?	reverse reaction, leading to an increased concentration of $Co(H_2O)_6^{2+}$
observed when the	• The reaction is endothermic, a decrease in temperature will javour the

One mark for each of the above points.

The Edison battery was developed by Thomas Edison in the 1900s. It uses iron and nickel electrodes and potassium hydroxide as the electrolyte. The overall reaction in the battery during discharge is:

(3)	7(3) ² (1) (172(3)	
the common design features and general operating principles of	Question 6a (1 mark) Write the half equation	Answer: • $NiO(OH)_{(s)} + H_2O_{(l)} + e^{-}> Ni(OH)_{2(s)} + OH_{(aq)}$
rechargeable (secondary) cells, with reference to discharging as a galvanic cell and recharging as an electrolytic cell, including the conditions required for the cell reactions to be reversed and the electrode polarities in each mode	for the reaction occurring at the cathode during discharge.	Marking Protocol: One mark for the above point. N.B: It is recommended that students use KOHES steps in alkaline conditions.
the common design	Question 6b (1 mark)	Answer:
features and general operating principles of rechargeable	Write the half equation	• $Fe(OH)_{2(s)} + 2e^{-}> Fe_{(s)} + 2OH^{-}_{(aq)}$
(secondary) cells, with reference to discharging as a galvanic cell and recharging as an	for the reaction occurring at the cathode during recharge.	Marking Protocol: One mark for the above point. N.B: It is recommended that students use KOHES steps in alkaline
electrolytic cell,		N.D. It is recommended that students use KOHES steps in alkaline

reversed and the electrode polarities in each mode

the common design features and general operating principles of rechargeable (secondary) cells, with	Question 6c (1 mark) During the recharge process, will the nickel	Answer: • The nickel electrode will be the anode; it will be positive.
reference to discharging as a galvanic cell and recharging as an electrolytic cell, including the conditions required for the cell reactions to be reversed and the electrode polarities in each mode	electrode be the anode or the cathode? What polarity will it have?	Marking Protocol: One mark for the above point.