

ACID-BASE REACTIONS 11.1-11.3

Unit 2 Chemistry 2023

KEY KNOWLEDGE

- the Brønsted–Lowry theory of acids and bases, including polyprotic acids and amphiprotic species, and the writing of balanced ionic and full equations with states for their reactions in water
- the distinction between strong and weak acids and strong and weak bases, and between concentrated and dilute acids and bases, including common examples
- neutralisation reactions to produce salts:
 - reactions of acids with metal carbonates and hydroxides, including balanced full and ionic equations, with states
 - · types of antacids and their use in the neutralisation of stomach acid
- use of the logarithmic pH scale to rank solutions from most acidic to most basic; calculation
 of pH for strong acid and strong base solutions of known concentration using the ionic
 product of water (K_w at a given temperature)
- accuracy and precision in measurement as illustrated by the comparison of natural indicators, commercial indicators, and pH meters to determine the relative strengths of acidic and basic solutions
- applications of acid-base reactions in society; for example, natural acidity of rain due to dissolved CO₂ and the distinction between the natural acidity of rain and acid rain, or the action of CO₂ in forming a weak acid in oceans and the consequences for shell growth in marine invertebrates.

11.1&2 OVERVIEW

All **Acids** have a sour taste, will turn litmus red and will neutralise bases.

Acids will donate proton/s (H⁺) to a base

•All **bases** have a bitter taste, will turn litmus blue and will neutralise acids.

Bases will accept proton/s (H⁺) from an acid

•Alkalis are bases that are soluble in water.

 Acids and bases react in neutralisation reactions to produce a salt and water.

COMMON ACIDS AND THEIR USES

	Name	Formula	Uses
s and	Hydrochloric acid	HCI	Present in stomach acid. Used as a cleaning agent.
names	Sulphuric acid	H ₂ SO ₄	Used in car batteries, to manufacture fertilisers and detergent
ise r	Nitric acid	HNO ₃	Used in production of fertilisers, dyes and explosives
emor	Ethanoic acid	CH ₃ COOH	Found in vinegar. Used as preservative.
Ĕ	Gearbonic acid	H ₂ CO ₃	Used in carbonated soft drinks and beer
	Lactic acid	$C_3H_6O_3$	Occurs in milk products, produced in muscles during exercise
	Ascorbic acid	$C_6H_8O_6$	Vitamin C – found in citrus fruits
	Phosphoric acid	H ₂ PO ₄	Used in some soft drinks and the manufacture of fertilisers
	Citric acid	$C_6H_8O_7$	Found in citrus fruits

COMMON BASES AND THEIR USES

TABLE 11.2 Common bases and their uses

Base	Formula	Use				
Ammonia	NH ₃	Fertilisers and detergents				
Sodium hydroxide (caustic soda)	NaOH	Soaps and detergents				
Sodium carbonate	Na ₂ CO ₃	Manufacture of glass; washing powder and detergents				
Calcium oxide (quicklime)	CaO	Bricklayers' mortar				
Lead(II) oxide	PbO	House paint (now phased out)				
Calcium hydroxide (slaked lime)	Ca(OH) ₂	Garden lime, plaster and cement				
Ammonium hydroxide	NH₄OH	Cleaning agents				
Magnesium hydroxide	Mg(OH) ₂	Milk of magnesia (for treatment of indigestion)				

SAFETY WITH ACIDS / BASES

- Safety glasses
- Lab coats
- Label bottles and containers clearly

pH is a measure of the acidity of a solution. The lower the pH the more acidic the solution.

Acids	Bases	CAUSTIC
Tend to be corrosive	Are 'caustic' (corrosive toward organic matter)	
Have a relatively low pH (1-7)	Have a relatively high pH (7-14)	ł
Solutions conduct electricity When diffing acids, <u>add acid to w</u>	Conduct an electric curre ater, not the other way around	ent

INDICATORS

Indicators can be used to view many acid base reactions that involve colourless solutions. Indicators are extracted from plant dyes. Solutions will change to different colours in the presence of an acid or base.

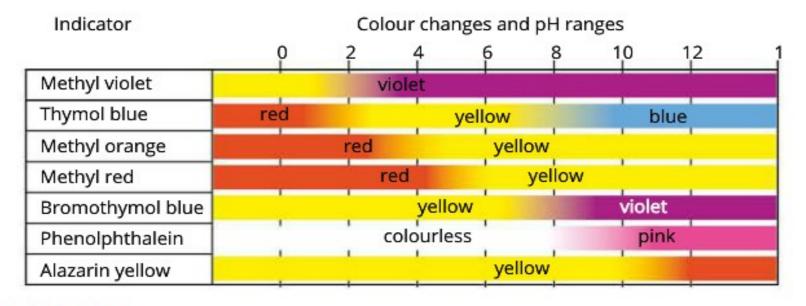


FIGURE 15.3.3 Common indicators and their pH ranges.

BRØNSTED-LOWRY THEORY OF ACIDS AND BASES

A substance behaves as an:

Acid – when it donates a proton/hydrogen ion (H⁺) to a base

Base – when it accepts a proton/hydrogen ion from an acid

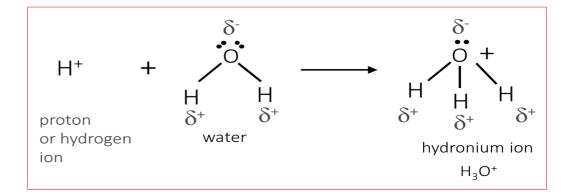
A hydrogen ion, H^+ , is formed when an electron is removed from a hydrogen atom, H.

H+ is the same as a proton.

Hydronium ion H_3O^+ , combination of a proton with a water molecule

Hydronium ion

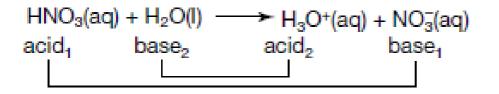
• Can be represented as $H^+_{(aq)}$ or $H_3O^+_{(aq)}$


e.g. $HCl_{(g)} + H_2O(l) \rightarrow H_3O^+(aq) + Cl^-(aq)$ is the same as $HCl_{(g)} \rightarrow H^+(aq) + Cl^-(aq)$

EXAMPLES OF ACID-BASE REACTIONS

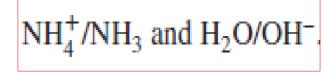
Acids are proton donors Bases are proton acceptors

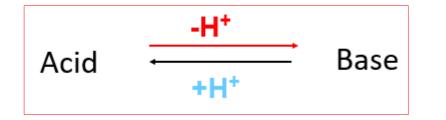
$$\begin{array}{ccc} HCl(g) + H_2O(l) \rightarrow & H_3O^+(aq) + Cl^-(aq) \\ \text{acid} & \text{bas} \\ & e \end{array}$$


$$\begin{array}{c} H^+ \rightarrow & \\ HNO_3(l) + H_2O(l) \rightarrow & H_3O^+(aq) + NO_3^-(aq) \\ \text{nitric} & \text{base} & \text{hydronium} & \text{nitrate} \\ \text{acid} & \text{gains a} & \text{ion} & \text{ion} \\ \text{loses a} & \text{proton} \end{array}$$

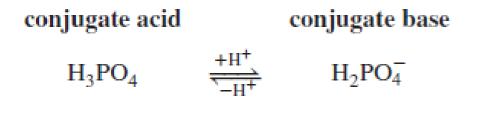
CONJUGATE ACID-BASE PAIRS

The **conjugate base** of an acid is the species formed after the proton is donated.


E.g. the conjugate base of the acid HNO_3 is NO_3^- .


NH₃(g) +	+ H₂O(I) —	→ NH4(aq) +	OH⁻(aq)
base ₁	acid ₂	acid ₁	base ₂

Conjugate pairs are:


 HNO_3/NO_3^- and H_3O^+/H_2O_2

CONVENTION: CONJUGATE ACID/CONJUGATE BASE

Conjugate Acid/Base Pairs **Differ by a proton**

Identifying conjugate acid-base pairs

Conjugate base = $acid - H^+$

Conjugate acid = base + H^+

SAMPLE PROBLEM 1 Identifying conjugate pairs

Show that the following reaction is a proton transfer reaction and state the acid–base conjugate pairs: $HCl(aq) + H_2O(l) \rightarrow H_3O^+(aq) + Cl^-(aq)$.

THINK

- Decide whether each of the reactants has donated or gained a proton.
- 2. The substance that has donated a proton is the acid.
- The substance that has gained a proton is the base.
- 4. Conjugate base = acid H⁺. Conjugate acid = base + H⁺.
 TIP: Remember that the acid should be put first in each pair.

WRITE

HCl has become Cl⁻; it has lost a proton (H⁺). H₂O has become H₃O⁺; it has gained a proton, (H⁺). HCl is an acid.

H₂O is a base in this reaction.

Conjugate base is Cl⁻. Conjugate acid is H_3O^+ . Conjugate pairs are HCl/ Cl⁻ and H_3O^+/H_2O .

PRACTISE ACID/BASE PAIRS

Identify the acids and bases in the following equation and their conjugate pairs:

■NH₃ (aq) + HF (aq) \rightarrow F⁻ (aq) + NH₄⁺ (aq)

 $^{\bullet}H_{2}O(I) + CN^{-}(aq) \rightarrow OH^{-}(aq) + HCN(aq)$

 ${}^{\bullet}NH_{4}^{+}(aq) + CH_{3}COO^{-}(aq) \rightarrow NH_{3}(aq) + CH_{3}COOH(aq)$

State the formula of the conjugate acid of:

CI -

 CO_{3}^{2} -

HSO₄ -

State the formula of the conjugate base of:

■HF

 HCO_3^-

■HSO₄ [–]

ANSWERS - ACID/BASE PAIRS

Identify the acids and bases in the following equation and their conjugate pairs:

 $[] NH_3 (aq) + HF (aq) \rightarrow F^- (aq) + NH_4^+ (aq)$

 $\square H_2O(I) + CN^-(aq) \rightarrow OH^-(aq) + HCN(aq)$

 $\square \text{NH}_4^+ (\text{aq}) + \text{CH}_3\text{COO}^- (\text{aq}) \rightarrow \text{NH}_3 (\text{aq}) + \text{CH}_3\text{COOH} (\text{aq})$

State the formula of the conjugate acid of:

 \Box Cl-HCl(after receiving H+) \Box CO32-HCO3- \Box HSO4-H2SO4

State the formula of the conjugate base of: HF F⁻ (after donating H⁺) $HCO_3^ CO_3^{2-}$ $HSO_4^ SO_4^{2-}$

AMPHIPROTIC SPECIES

Amphiprotic species can donate as well as accept a proton, H⁺

HCO ₃		H₂O		H₃O+		CO_3^{2-}
acid	+	base	\rightarrow	acid	+	base
HCO ₃		NH_4^+		H ₂ CO ₃		NH ₃
base	+	acid	\rightarrow	acid	+	base

POLYPROTIC ACIDS

- A **monoprotic** acid- can donate only one proton, H⁺
- A **polyprotic** acid is one that can donate more than one proton, H⁺
- A diprotic acid can donate two protons
- A **triprotic** acid can donate three protons

	Polyprotic acids			
Monoprotic acids	Diprotic acids	Triprotic acids		
*Ethanoic acid, CH ₃ COOH	Ascorbic acid, H ₂ C ₆ H ₆ O ₆	Citric acid, H ₃ C ₆ H ₅ O ₇		
Hydrochloric acid, HCl	Carbonic acid, H ₂ CO ₃	Boric acid, H ₃ BO ₃		
Hydrocyanic acid, HCN	Sulfuric acid, H ₂ SO ₄	Phosphoric acid, H ₃ PO ₄		
Hydrofluoric acid, HF	Tartaric acid, H ₂ C ₄ H ₄ O ₆			
Nitric acid, HNO ₃				

TABLE 11.3 Common monoprotic and polyprotic acids (acidic protons in bold)

'Contains four hydrogen atoms, but can only donate one proton.

EXAMPLES:

Monoprotic acids:

```
Write the reaction : Ethanoic acid + water \rightarrow Hydronium ion + e<sup>+b-reactor</sup> ion
CH<sub>3</sub>COOH (aq) + H<sub>2</sub>O (l) \rightarrow H<sub>3</sub>O<sup>+</sup> (aq) + CH<sub>3</sub>COO<sup>-</sup> (aq)
```

Diprotic acids:

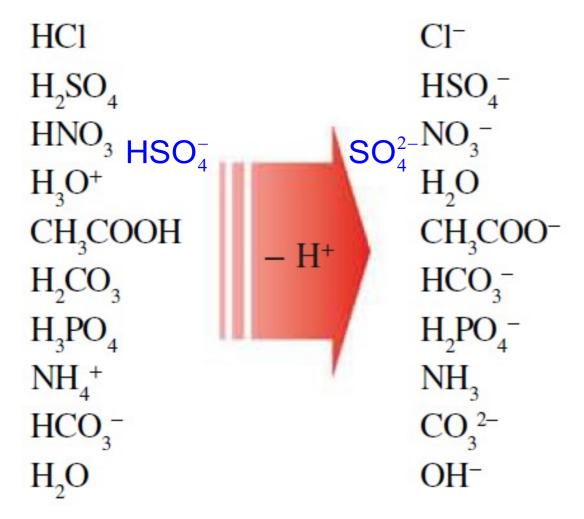
Write the reaction: sulphuric acid + water.

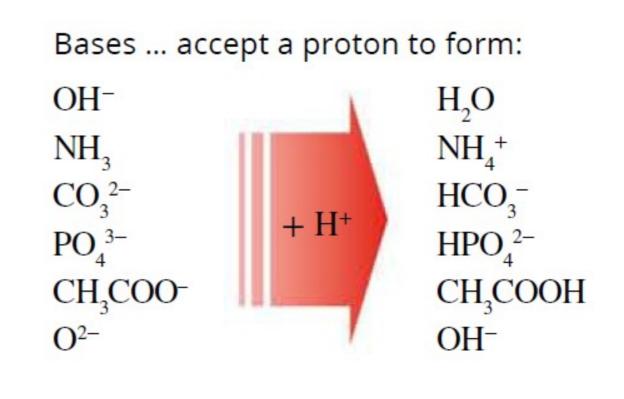
```
In
Stage 1: H_2SO_4(aq) + H_2O(1) \rightarrow H_3O^+(aq) + HSO_4^-(aq)
Stage 2: HSO_4^-(aq) + H_2O(1) \rightleftharpoons H_3O^+(aq) + SO_4^{2-}(aq)
```

double arrow

indicates only partial ionisation, because hydrogen sulfate is only a weak

EXAMPLES:


Triprotic acids:


Write the reactions for phosphoric acid

Stage 1: $H_3PO_4(aq) + H_2O(l) \Rightarrow H_2PO_4^-(aq) + H_3O^+(aq)$ Stage 2: $H_2PO_4^-(aq) + H_2O(l) \Rightarrow HPO_4^{2-}(aq) + H_3O^+(aq)$ Stage 3: $HPO_4^{2-}(aq) + H_2O(l) \Rightarrow PO_4^{3-}(aq) + H_3O^+(aq)$

SOME COMMON ACID-BASE CONJUGATE PAIRS

Acids ... donate a proton to form:

AMPHIPROTIC SUBSTANCES

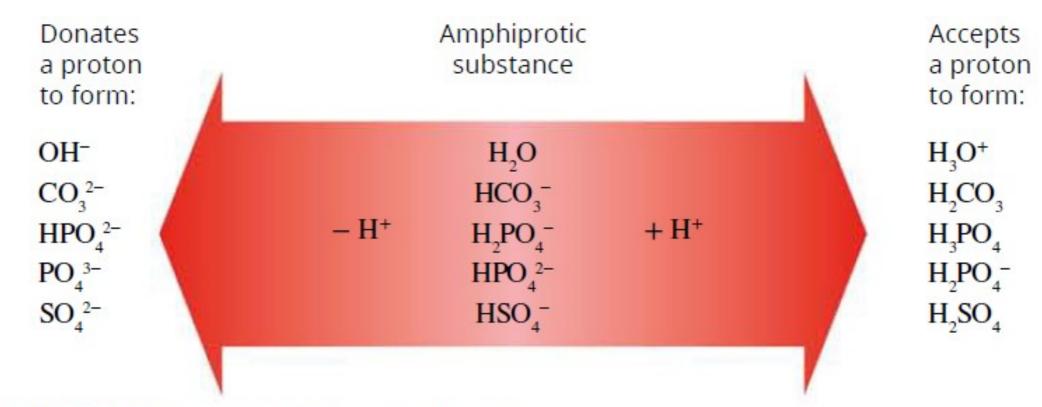


FIGURE 15.1.11 Substances that are amphiprotic.

$$\begin{split} &HCO_{3}^{-}(aq) + H_{2}O(l) \rightleftharpoons H_{2}CO_{3}(aq) + OH^{-}(aq) \\ &\text{base} & \text{acid} \\ &HCO_{3}^{-}(aq) + H_{2}O(l) \rightleftharpoons CO_{3}^{2-}(aq) + H_{3}O^{+}(aq) \\ &\text{acid} & \text{base} \end{split}$$

COMPLETE EXERCISES

Exercise 11.1 and 11.2- pg 414

11.3 CONCENTRATION AND STRENGTH OF ACIDS AND BASES

Concentrated solutions have a large number of solute particles in a given volume.

Dilute solutions have a small number of solute particles in a given volume.

Molarity concentration measured in units of moles of solute per litre of solution, with units M or mol/L.

c = n/V (mol/L)

CALCULATING THE CONCENTRATION AND THE NUMBER OF MOLES

$$c = \frac{n}{V}$$

$$n = c \times V$$

where:

n is the number of moles of solute

c is the concentration or molarity (mol L^{-1} or M)

V is the volume (L).

TIP: Remember that uppercase M represents the molar concentration of a solution in mol L^{-1} . Uppercase M (in italics) is molar mass in g mol⁻¹.

SAMPLE PROBLEM 2 Calculating the number of moles in a solution

Calculate the number of moles present in 250 mL of 3.00 M HCl.

THINK

- Identify the given information and compare units given to units required. The volume of the solution is given in mL, while the concentration is calculated in L. Convert from mL to L. Identify the unknown quantity.
- 2. Use the formula to calculate the number of moles:
 n = c × V
 TIP: Remember to check significant figures and units.

WRITE

```
c(\text{HCl}) = 3.00\text{M}

V(\text{HCl}) = \frac{250 \text{ mL}}{1000}

= 0.250 \text{ L}

n(\text{HCl}) = ?
```

```
n(\text{HCl}) = 3.00 \times 0.250
= 0.750 mol
```

PRACTICE PROBLEM 2

Calculate the number of moles present in 100 mL of 1.35 M NaOH.

11.3.2 STRENGTH OF ACIDS AND BASES

•Strength of an acid or base is related to the ease with which it donates or accepts a proton, H+.

A strong acid donates protons readily. A strong base accepts protons readily.

- Strong acids fully ionise in water shown by using just one arrow.
- Strong bases fully dissociate in water.
- Ionisation reaction reaction in which a substance reacts with water to form ions
- Electrolyte solution or liquid that can conduct electricity.

E.G STRONG ACID AND STRONG BASES

A few strong acids fully ionise in water, producing many ions. Their solutions, therefore, are strong electrolytes. All protons are donated to water, forming hydronium ions and the anion of the active virtually complete

$$\frac{\text{HCl}(g) + \text{H}_2\text{O}(l)}{\text{strong acid}} H_2\text{O}^+(aq) + \text{Cl}^-(aq)$$

Strong bases fully dissociate in water.

NaOH(s)
$$\xrightarrow{H_2O(l)}$$
 Na⁺(aq) + OH⁻(aq)

Strong base

STRONG ACIDS

... are acids which ionise completely (readily donate protons) Examples: $\begin{array}{l} HCl_{(g)} + H_2O(\iota) \rightarrow H_3O^+{}_{(aq)} + Cl^-{}_{(aq)} \\ H_2SO_4(\iota) + H_2O(\iota) \rightarrow H_3O^+{}_{(aq)} + HSO_4^-{}_{(aq)} \\ HNO_3(\iota) + H_2O(\iota) \rightarrow H_3O^+{}_{(aq)} + NO_3^-{}_{(aq)} \end{array}$

HCl, H_2SO_4 , HNO_3 completely ionise in water until there are hardly any HCl, H_2SO_4 , HNO_3 covalent molecules remaining

Hydrochloric acid (HCl), sulphuric acid (H₂SO₄) and

STRONG BASES

Just like strong acids, strong bases dissociate completely in water

Take Na₂O: Na₂O_(aq) + H₂O_(l) \rightarrow 2Na⁺(aq) + O²⁻(aq) then O²⁻(aq) + H₂O_(l) \rightarrow OH⁻(aq) + OH⁻(aq)

Here the O²⁻ ion is an example of a strong base Strong bases accept protons easily Reaction is complete

NaOH is also a strong base It is more correct to say that NaOH is a source of the strong base $OH^- NaOH(s) \rightarrow Na^+(aq) + OH^-(aq)$

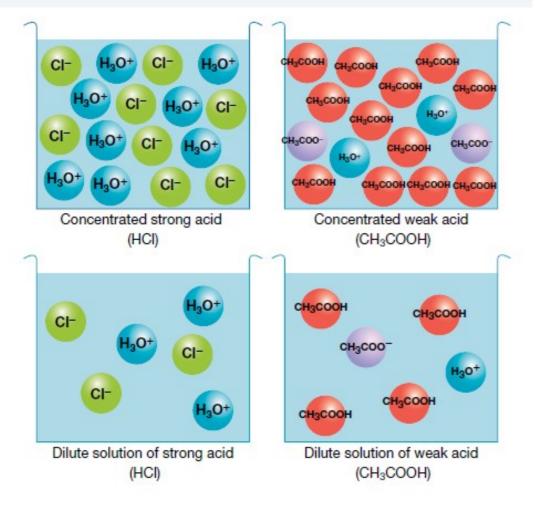
Weak acids and bases

WEAK ACIDS AND

Weak acids partially ionise in water. Weak bases partially dissociate in water.

Examples of weak acids are ethanoic acid, lactic acid and citric acid.

 $CH_3COOH(1) + H_2O(1) \rightleftharpoons H_3O^+(aq) + CH_3COO^-(aq)$


Weak bases are ammonia. $NH_3(g) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$ Use double arrows in reaction

11.3.3 CONCENTRATION VERSUS STRENGTH

The concentration of an acid or base refers to the quantity of solute in a given volume of solution, whereas the strength of a solution refers to the extent of ionisation or dissociation of the acid or base.

Strong acids	Weak acids	Strong bases	Weak bases	
Hydrochloric acid, HCI	Ethanoic acid, CH ₃ COOH	Sodium hydroxide, NaOH	Ammonia, NH ₃	
Sulfuric acid, H ₂ SO ₄	Carbonic acid, H ₂ CO ₃	Potassium hydroxide, KOH		
Nitric acid, HNO ₃	Phosphoric acid, H ₃ PO ₄	Calcium hydroxide, Ca(OH) ₂		

CONCENTRATED AND DILUTE WEAK AND STRON CIDS

Strong acid or base

solutions, will have the ionised products because it is completely ionised.

- Weak acid or base solutions, will have both the reactants and products because it is only partially ionised. Concentration
- **Concentrated solutions** will have a large number of solute particles.
- **Dilutes solutions** will have fewer solute particles.

TABLE 11.4 Relative strengths of common acids and their conjugate bases							
		Name of acid	Formula	Conjugate base	Name of base		
	COMMON	Hydrochloric	HCI	CI⁻	Chloride ion		
	STRONG	Nitric	HNO ₃	NO ₃ ⁻	Nitrate ion		
verv	ACIDS	Sulfuric	H_2SO_4	HSO₄ [−]	Hydrogen sulfite ion		very
strong		Hydronium ion	H₃O⁺	H ₂ O	Water		weak
strong	9	Phosphoric	H ₃ PO ₄	H₂PO₄ [−]	Dihydrogen phosphate ion		weak
	COMMON	Hydrofluoric	HF	F⁻	Fluoride ion		
gth	WEAK ACIDS	Ethanoic (acetic)	CH₃COOH	CH₃COO⁻	Ethanoate (acetate) ion		gth
decreasing <mark>strength</mark> of acids		Carbonic	H ₂ CO ₃	HCO₃ [−]	Hydrogen carbonate ion		increasing strength of bases
decrea		Hydrogen sulfide	H₂S	HS⁻	Hydrogen sulfide ion		increa
		Ammonium ion	NH_4^+	NH3	Ammonia	COMMON WEAK	
weak		Hydrogen carbonate ion	HCO ₃	CO3 ²⁻	Carbonate ion	BASES	strong
		Hydrogen sulfide ion	HS⁻	S ²⁻	Sulfide ion		
very weak		Water	H ₂ O	OH-	Hydroxide ion	COMMON STRONG BASES	strong
		Hydroxide ion	OH⁻	O ²⁻	Oxide ion		
		Hydrogen	H ₂	H⁻	Hydride ion		

The stronger the acid, the weaker its conjugat e base.

HOMEWORK

11.3 Exercises and Exams