

Camberwell Girls Grammar School An Anglican School-Educating Tomorrow's Woman

STUDENT NUMBER

MATHEMATICAL METHODS School Assessed Task – Part 1.3A

Thursday 25th May 2017

Reading time: 10 minutes (part A and B) Writing time: 30 minutes part A

Modelling Task

I I f		
umber of questions	Number of	
to be answered	marks	
5	21	
	to be answered	Iumber of questionsNumber of marksto be answeredmarks521

- Students are permitted to bring into the Assessment room: pens, pencils, highlighters, erasers, sharpeners, rulers
- Students are **not** permitted to bring into the Assessment room: notes of any kind, blank sheets of paper and/or white out liquid/tape.
- Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room. Students must not disclose the contents of the task; to do so will be a breach of VCE guidelines and will be dealt with according to VCAA regulations.

Materials supplied

- Question and answer book of 9 pages.
- Working space is provided throughout the book.
- VCAA formula sheet

Instructions

- Write your name in the space provided above on this page.
- All responses must be written in English.
- You may use your calculator for Part B of the assessment. Part A must be handed in prior to this.
- Answer all questions in the spaces provided.
- Unless otherwise specified an exact answer is required to a question.
- In questions where more than one mark is available, appropriate working **must** be shown.
- Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Part A - Short Answer

Question 1

The graphs of $y = \cos(2x)$ and $y = a\sin(2x)$, where a is a real constant, have a point of intersection at $x = \frac{\pi}{3}$

a) Find the value of **a**

2 marks

b) If $x \in [0, \pi]$, find the x coordinate of the other point of intersection of the 2 graphs

Question 2

- a) Apply the following transformations to the curve $y = \frac{2}{x^2} + 2$, in the order shown and hence give the rule of the image.
 - i) Translate 2 units in the negative direction of the y-axis
 - ii) Dilate by a factor of ½ from the x-axis
 - iii) Reflect in the line y=x
 - iv) Translate 1 unit in the negative direction of the x axis

4 marks

b) State the largest possible domain of $f(x) = \frac{2}{x^2} + 2$ such that the inverse function exists.

1 mark

Question 3

A person steps off a building with a speed of $v = ae^{-\frac{3}{4}t} + b m/s$, where t is the time in seconds after stepping off from the top. After 10 seconds, her speed is 72 km/hr. In order to survive the fall she must land with a speed of less than 40 m/s.

a) Find the exact values of a and b.

b) Calculate the time by which the glider must land in order to survive.

2 marks

Question 4

Use the quotient rule to show that if $f(x) = \tan(2x)$ then $f'(x) = 2 \sec^2(2x)$

4 marks

Question 5

a) Differentiate $y = \sqrt{16 - 4x}$ with respect to x.

b) If
$$f(x) = \frac{x}{\sin(x)}$$
, find $f'\left(\frac{\pi}{2}\right)$.

2 marks

End of Part A

Camberwell Girls Grammar School

An Anglican School - Educating Tomorrow's Woman

	STUDENT NUMBER	X.	75. 15.	L	etter
Figure	5				
Words					
	Student Name				
-	Teacher	Ms. Lobo	Mrs. Bergamin	Mr. Levitt]

MATHEMATICAL METHODS School Assessed Task – Part 1.3B

Thursday 25 th May 2017 Reading time: with part B Writing time: 60 minutes

Modelling Task

Number of	Number of questions	Number of	
questions	to be answered	marks	
3	3	41	

- Students are permitted to bring into the Assessment room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are <u>not</u> permitted to bring into the Assessment room: notes of any kind, blank sheets of paper and/or white out liquid/tape.
- Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room. Students must not disclose the contents of the task; to do so will be a breach of VCE guidelines and will be dealt with according to VCAA regulations.

Materials supplied

- Question and answer book of 9 pages.
- Working space is provided throughout the book.
- Formula sheet

Instructions

- Write your name in the space provided above on this page.
- All responses must be written in English.
- You may use your calculator for Part B of the assessment. Part A must be handed in prior to this.
- Answer all questions in the spaces provided.
- Unless otherwise specified an **exact** answer is required to a question.
- In questions where more than one mark is available, appropriate working **must** be shown.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Part B (41 marks) CAS ACTIVE

Question 1 (12 marks)

An island is located at X, 10 km from the nearest point Y on a straight beach. Electric power is to be provided by laying cable between X and a power generation plant located at Z, 20 km along the beach from Y.

The cable contractor decides that the cable will go along the sea bottom from X to A, a point on the beach p kilometres from Y ($p \ge 0$). It will then run along the beach to Z. The cost of laying the cable is \$100,000 per kilometre along the beach and $w \times$ \$100,000 per kilometre along the sea bottom, where w>1.

a) Let the total cost of laying the cable be C×\$100,000. Show that $C = 20 - p + w\sqrt{100 + p^2}$

The general shape of the graph of the function representing the cost of laying the cable is shown here. It shows that the function has a single local minimum.

b) Use Calculus to show that the minimum cost of laying the cable occurs when $p^2 = \frac{100}{w^2-1}$. (You don't need to demonstrate that this is specifically minimum)

The Golden Sands Beach Resort is an expensive holiday destination located on the beach front between E and F as shown in the diagram. E and F are 9 and 10 kilometres from Y respectively.

c) If $w > \sqrt{2}$, show that if the cost of laying is to be a minimum the cable will pass along the beach in front of a part or all of the resort.

3 marks

d) If $w = \sqrt{5}$, find the position of A for which the total cost of laying the cable is a minimum **and** the value of this total cost.

Question 2 (12 marks)

Consider the function $f(x) = \frac{16-x^4}{x^2-4}$

a) What is the domain of f?

b) Find $\lim_{x \to 2} f(x)$

3 marks

1 mark

c) Sketch the graph of f(x) clearly labelling any key features in coordinate form.

4 marks

d) On the same axis sketch the gradient function of f(x) labelling any key features.

Question 3(17 marks)

A bungee jumper dives from a tower towards a river. Her height from the river (m) at any time t (s) is given by the function $s(t) = 100 \cos\left(\frac{3}{4}t\right) \cdot e^{-\frac{t}{5}} + 100, t \in [0,10]$

a) Write an expression for the average velocity of the bungee jumper on the interval [t,t+h]

2 marksb) How far has the bungee jumper travelled between t=0 and t=10? Give your answer to 2 decimal places.

2 marks

c) Find an equation for the instantaneous velocity v(t) of the bungee jumper at time t

1 mark

d) The graph of s(t) and v(t) and a(t) (instantaneous acceleration) are shown below.

i) Label each graph with their title.

2 Marks

iv) When is the velocity negative? What does negative velocity indicate?

v)	At what time is the velocity first equal to zero and what is the displacement at this tir Explain the significance of this.	ne?
_		
_		
_		
-		3 marks
vi)	When is the acceleration first equal to zero and what is the velocity at this time?	
_		
_		
_		
_		

2 marks

END OF PAPER