

Student Name			
Teacher	Mr Trufitt	Mr Woodlock	

MATHEMATICAL METHODS UNIT 3

SAC 1: Application Task

PART 2 – "GENERALISING THE CONTEXT"

Monday 10 May 2019

Reading time: 5 minutes **Writing time:** 35 minutes

Structure of Task

Section	Number of questions	Number of questions to be answered
Application Task	2	2

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, one CAS calculator and/or one scientific calculator, and one approved bound reference.
- Students are not permitted to use: blank sheets of paper and/or white out liquid/tape.

Materials supplied

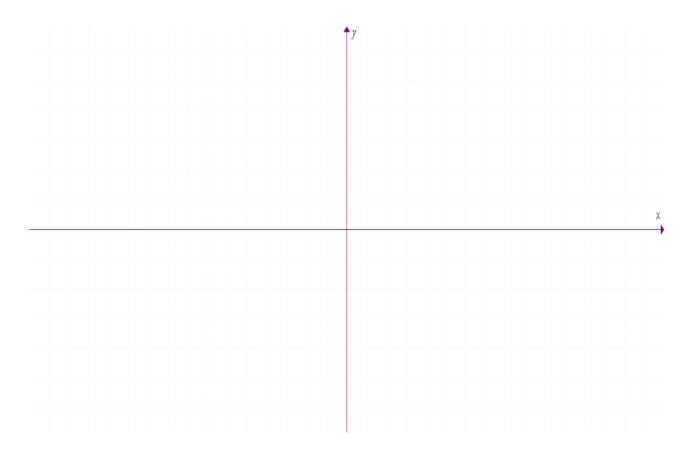
- Question and answer book of 4 pages.
- Working space is provided throughout the book.

Instructions

- Write your name in the space provided above on this page.
- All responses must be written in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Students must not disclose the contents of the task; to do so will be a breach of School guidelines.


MATHEMATICAL METHODS UNIT 3

2019 SAC 1: Application Task

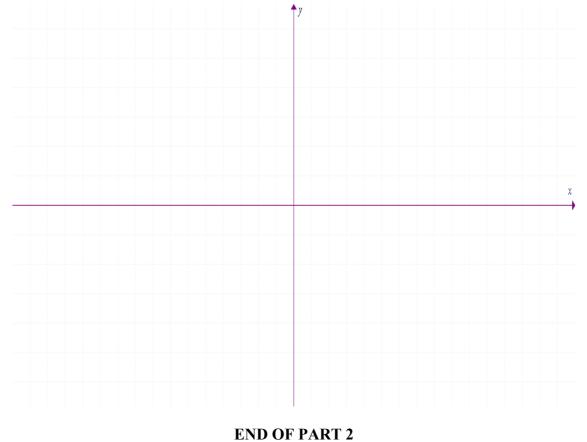
PART 2: "GENERALISING THE CONTEXT"

- 1. A function, h, is defined for $h: D \to R$, $h(x) = \log_e((x-p)^2 m)$.
 - a. State the maximal domain over which h(x) is defined for the case where: p > 0, m > 0.

b. Sketch the graph of h(x), labelling asymptotes and intercepts.

c. Consider the function where p = 1 and m is a constant. Find the value(s) of m for which x = -2 is the asymptote.

d. Find the values of *m* in terms of *p* for which x = -p is an asymptote.


e. For what values of m in terms of p does an asymptote exist?

WORKING SPACE

2. a. Express the inverse of h(x) as two separate functions, $h_1^{-1}(x)$ and $h_2^{-1}(x)$.

b. State the domain and range for each inverse function, $h_1^{-1}(x)$ and $h_2^{-1}(x)$.

c. Sketch the graphs of $h_1^{-1}(x)$ and $h_2^{-1}(x)$ on the axes below, labelling all key features.

